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In the usual manner of building_dynamlcal models of Nature

one. always begins by, postulating a certgin space-time and from

there procéeds to develop a certain physics. That is, one al-

ways starts from a gilven, preestablished geometry, upon which

a consequential dynamics is established, and it 1s well known

that the choice of the geometry ( of the vostulated space-tima )
unijquely determlnaes the physlcs that can be constructed in that
postulated space-tizme. Thus, just as the only dynamics compati-
ble with the absolute space-time of Newton i1s precisely Nswto-
nilan dynamlcs, correspdndingly, In ¥inkowskl space-time only
the dynamics of Speciai Relativity can be naturélly buiit,

(1)

Sch@nberg obsarved fha£ while the cont;avariant vectors
are the ongs which are more intimétely rélat;d wlth geometry,
the,covariant'vecto£s are the ones which are more closely
connected with phrysics. As an inmediate example, we recall that
the positlon vector z-.is essentlally contravariant, whereas

the momentum |p 1s essentially covariant. This subject willl be

unfolded in the foliowing sectlons. Before turning over to the

‘point of view to be developpéd here, let ué_present the Spacizal

Relatlvistic and Nthon@an'cases, as. they are usually stated.

The four-dimensional space-time manifold of Mihkowski con;
slsts of alf-dimensicnal spatial hypercons with tims pointing
alonz 1ts symmetry axls, The geometry of this manifold has as
1t3 invarlanca group the full Lorentz group ( or group of

- ’
i'oincare ) :
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; -h gresx Indices running from 1 to [, Herae, ( LVV ) 1s a
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\} : e
(M x4) oruhogopal matrix and aP 1s an arbitrary (constant )

Li~vector.

In the Newtonilan case, the /j-dimensional space-tinme manifold

was first introduced by E. Cartan (2) and is taken to consist

of a 3-dimensional space-like hypersurface, orthogonal to the
absolute time axls. This geometry fixes the group of symmetry

( Invariance or ralativistic group )
o« of 8 o Tl |
xd =
G g, x|+ k (1.2)

Here, greek indlces run from 1 to ) and the matrix ( Gd

»

has the ( 3+1) x ( 3+1 ) block form :
G' \V
of

G (5 . = ‘ O . " it (1.3)

p )

where G 1s a ( 3 xz 3 ) orthogonal matrik and the ( 3 x 1 )
column vector w is arbitrary. This geometry ( and its related

.symmetry group ) determines both the absolute kynematical and

dynaumlcal entitles, that 1s, those entitiss which are left
. \.:1“-- 1

invariant by the,tranéfbrmgtioﬁs’(.1.2 ’L

.

Let us take Newtonian li~dimensional space~time as an affine

manifold, E, . ' ' ‘

o i
The matrix ( G ) can ba dlagonalized and put in the

e

form G( GT WV
. O 0

From thils, 1t iIs scon that the metric ( or fundamental) tensor

-

@), = (“)'7 = (S’ \ of the affine Newtonlan space-time
A @ <p

Eh is singular. This fact immedlately distlngulshes Newtonlan

.space-tima from 1ts speclal-relativistic counterpart. In fact,

while in this latter case one can introduce dual metric tensors
) :
(c)geq3 and (o)g é , onoe balng the inverse of the other,
. . VF
thls cannot ba done in Eh’ since there the 1inverse 77 does
not exlst. Therefore, it 1s precisely in Eh where the distinction
between covarlant and contravarlant l-vectors will be expected to

be more fundamental than in fhe speclal relétivistic case, where
theroe exlists a compléte transposition betwéen contravariant and
covafiant guantities. Thils, of course,-should.not be taken as
meaning that in the 3-dimensional space-like hypersurfacs 33

of Eh this ralsing or lowering of indices 1s not fully ju;tifiad
s, slnce that s-ubmanlfold‘E3 1s.Eﬁc11dean? This last fact leads

(3)

to the consideration made a long time ago by &. Cartan 5

. that ¥ 1s not an Huclldean manifold, but its affine connection,

(x)v“ is Fuclidean, whilch 1s just another way of seeing that

1l
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.the metric tensor of &, 1is - . : . :
- gdnetlan, _ e W2 e MEZ TS,

In the present work we intend to fIx the geonetry of -
e Spage-tI@e by 1n£roddcing a certain minimal number of fundamental
dynazical entities. This V.i_eW'18 contrary to the usual one and : 2. CONTRAVARIANT AND COVARIANT VECTORS
thls epistemological differeﬁce will be scrutiniz;d in detail. |
Jhen examinlqg the interconnection between physics and
geometry 1s of paramouht {mportance to establish the essentlial
distinctlon that exists betwaeen cont?avariaﬁt and covarlant
ent;ties. In this séction,.we discuss some aspects which ma-
nifest this distinction.
diven the vector affine space En’ the linear mapping

w En —¥ R of & over R defings a linear form over En.

\igb\ The vectors of En are the contravariant vectors & which, in
% == . :
\\‘ N \"\ -
e “f““‘~-a glven basls { oy } arg wrltten as
& .= xt ei ‘ (2.1)

The linear forms over E belong to another vector affine -

s ’ * *
spacs E; s dual of En .The vectors x & En are the covariant

vectors WO ( £ )
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2% = os g uJ(ei)xi =aix1 (2.2)



! } As an example, we racall that the position vector 4 is -
where we can consider the a; £ W ( ey ) as the componants j i j e

varjant, whille the gradlent a(P/DX( of a scalar functiocn C@(X)

of the covarliant vectdr W  1In the dual basis { xlj =

\

% of po51tion 1s a covarlant vector. We rec h
{ ot } s l.e., wa may write a covarlant vector4&* E E; as TR

: dynarical quantity momentum is def ad) .
e W Dl o) ¥ ) y momentun p  1s defined as & ©Y/dy . This

definition makes momentum a covariant vector, and hen 1t
The geometrical meaning of the contravarlant and covarlant - . 7 o o

’ much more aprropriate to write down the fundamental equation
vectors 1s obtained through the introduction of an affine o = ! 3

‘ : of Newtonian dynamics as =it / dt , than in the form
spaca ( 0, En’ ) = Ew s which 1s a space of points having y 4 . ap ’.

: f£ = ma®x / at® .
a structurs of a vector space depending of the point O,

taken as ths origin( ol )‘. It should be hotiéed that neither

i With contravarlant and covarilant vectors many different kinds
a metric was defined In Ej, nor a distance in EK . 5

1 of algebras can be bullt (5), Thus, let the contravariant vector

The contravariant vector 4 = x 8y € En is represented

: v = v I, and the covariant vector U = U 19 be written in the

geometrically by an orlented line, whereas tha covariant : J J
1 Y reciprocal basls I, and Ij of a certain n-dimensional affine
vector,&* = Xg 61 (= E; is represented by two parallel \“5% e, : . cproca S J : v 5
~ & \‘ \\\§ \ - . j . ' -

.k = ——-——_gpace. The invariant U, VY 1s denoted here b <'U v ;> =

hyperplanes, since we have a family & = x4 ol = w (& o . 2 o 24 3
1 ' £ _ " Introducing the symbois (V) and ( U ) assoclated to the

ag xX° = k of parallel hyperplanes, depending on the para-

vectors V and U by the anticommutation rules

Lo, ], = . | ~

the components of a contravariant vector have L(L)) (Ul) I
. ‘ v +

meter k¥ o Since the coordinate axis are intercerted at xi =

k / ay »

—
-

: - (2l ¢
dimensions of lenght - an extensive quantity - while the cova-

o, (U)L <V, VU7 e,

riant vector components have dimensions of the Ilnverse of &

: : , we obtain the Crassmann algebra G, ( 1; 1s the unit of G, Yo
lenght - an intensive quantity. . ) e n .

This algebra 1s generated by the elements ( IJ ) and ( 1 ) through

? ' i ; t1 it hatlcs rules



3quations (2.5) show that, although Gn is én algebra of
a n-dirensional space, it has the structure of a Clifford

algebra- CZn of a 2n-dimensional srace. The thesory of Gn is,

oessentlally, that of the srinors of SZn' The Grasszann algobra_

G,» taken over the complex numbers, 1s equivalent to a n-di-
mensional Jordan-Wigner algebra. Taking the adjoint ( Ij ) ;
¢ Ij {F s the antlicommutation rules (2.5) bacome the
n-dirensional equivalent to emission and absorrtion of the se-
cond quantization for fermions(s).

Sl:%larly, ong can define an assoclative algebra Ln s with

alements denoted by { v } and { U } s satisfying the

commutation rules :

v ivl]
[{v} {V}]

( 1; belng the unit element of Ly ), and the generators of
n

0 [{U},{U"}]:O
<;\/ ) U ifLw

(2.6)

\l

L_ satisfying the commutation rules :

n[{I_;}‘) {In}] 20, [{Ij}, {Ih}]-‘— 0
[{is3:{1h}] =y

2.7)

Squations (Z2.7) rrovide the Helsenberg corrutaticn rules for

3

the coordirate = ‘J qj and momentum oyeraters P = Pj DTS

the gersrators of which are given by qj = { Ij } and

pj =(2mT 1) h-1 { I"I } , whera h is Planck's constant.

Thus, Ln over tha comrlex nucbers 1s equivalent to Helsenberg-~
alpohbra for tho orerztors ¢ and P of a quantum system with n

degreos of freedom. It can also be shown that quantum kynematics
1s related to tho symrlectic geometry of the rhase space of

Hamiltonian classical mechanics through its symplectic algebra

Ln'(7). Besldes, the algebra'Ln over the corrlex numbers rrovi-

dos the n-dirensional equivalent to the Dirag-Jcrﬁan-Ksein al-
gebra for the emission and abgorption operators of the second
quantirzation for bosons. In /j-dimensional srace, thulacpion
alpobra, obtalned from @V = pl dxi , 1 =1,2,3,i , provides

a quadratic form Iin 8 variables, Thin'is the only instaﬁce in
which'thore is a triality : bns vector and two half—sfinors,

all with 8 components and all with simllar propertles(a)
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1onooierl objects, we begln by rostulating the ‘exlctence

g nugber. of dy

of a space-time manifold, the -most general possible, with the

Having pr nted the abow nsidera ns up ﬂ he d rr. n 4 min
5 -Bogaghlad, the ove conslderations upon the different ieast number of predetermined gepmetrical pro;erties Next, we

. he - r’ % 2
algebralic strutures gensrated by n n an ' u . he nz

y covariant and contravari ' h
» t shall populate the nzked manifold with certain dynamical objects,
vectors, we may begin to assi 1 : : ) hen d mine what kind of
gn a dynamical meaning to som
; g e of taken as fundamental, trying then to eternine i oc 7

these vectors, ] s
nifold 1is compatible with these dynamical objects.

Ag wa al
As we already sald, the usual way of building rhysical mo- ' The only way that a physicist has of 1nteréctin8 with Nature
dels and / or theories consists in
postulating a given - ‘ '
) g space is by means of measuring processes ( observatlons transmited
time manifold, which 1s almost alwa
ys metric ( It can b i
9 % first to his senses and from those to the brain). The only way
shown that a differe 2 ) |
ntiable manifold always admits a Riemannian E " . of an Intaraction reaching the senses ( and thence the brain ) 1s by
metric(9) » (10) ), and where that metric is al l :
c is a P
ways fixed ; means of a signal which transfers information from the system
ab initio. This 1s the fixed s | ‘
pace-time framework
| W upon which a . to the observer. For this, a physical field 1s needed, to which
certain theory is built, ;
2 i a certaln energy and momentum densities may be ascribed, and

Our starting point herg -1s epi g & e phny
154 stemolo lcﬂlly lust the th h! B]ca] agents for the trans
e '] which are

opposite : We try to determine the geometry by means of the 1tlis only through the transfer of energy

signal, Therefore ,

- introduction of a certain minim a1 . .
I al number of fundamental dynaml- and momentum that a certain xnowledge of the World, that 1s, -

' tal xnowle
cal ObjectB. This POint of view opposas the usuai eplstemologi- may be Obtai“eda in pal: C ,

of natural phenomena,

cal Stand, which Oegius with the notion o spa e-time of - me features. In other :
( dge (o] s 8~ace ti

Aristotle, Newton, lMinkowski, 3iemann, Weyl, etc. ) as tho.- notion of srace-time 1s stnbtlf dependaent of the notion of

basic entity in Nature ( and of human rercertion ). In th r osmologlcal model most widely
: ‘ n the very cosm gica

energy-comnentum.

With this aim in nind, -of trying to determine a certain

geonetry ( 1.e., a certain metric ) starting from a minimal
1 '



accorted nowadays - the.big-bang model. - the.creation ( exran- -
slon ) of space-time 1s 1nsxtr1cab;y assoclated to the total ini-
tial energy-momentum density of the universa. That-is, the initial
dynamical content is the only determinant on how the ggometric
structure unfolds. -

Thus, let us consider the antisymmetrical bilinear form
av = dpP dxy » built up with the covariant momantum rour-'
vec?or pp with the contravariant position rour-véctor ¥ .
The hypervolume dV ( physically; thelggtion ) 13 constant with fespect
to a variation of a parameter ,X ( which may be identified
with the cosmologicel time ). The universe's inltiai condltlions
are such that for A' = O, the momentum content was extremely
hiéh:, whereés the space-time content was extremely low. We
have here.the most basic and fuﬁdamental observation refered
above that the covarlant vectors characterize the dynamical
aspects whereas the contravariant onss characterize the geso-
mgtrical aspects..

Weo begln by considering a fundamental fleld characterized
by the J-momentum p, , and with the ald of this.dyna':.ical"
quantity we try to construct a spape-tima geometry. For this
rurpose, we insert in the given fie{d a test nggglg;g which

13

will act ac our moans of rrobing space-time geometry whipﬁ
we want to determine. The vhyslcal characteristics of which
this particle will bs revested will dapehd, essentlially, on
the kind of dy;amics Initially admitted as being assoclated
with the postulated fundamental field. Thus, 1f we start from
Newtonian dynamics,Athe fundamental proberty of that test
pargicle will'be'its inertis while 1f we start'from Maxwelllan
dynamics, the property which will enable it to probe the
space~-time structure wili be 1ts chargg and so on.

We shall take, then, as basic postulates of all our

future considerations the two following ones.

I. FUNDANENTAL DYNANICAL POSTULATE . The covariant lj-vector

P e o nt 1 Aunasset e
= 1,2,3,li 1s the furdanents1 dynarle:

~T. FUNDANTNTAL GEONETRICAL POSTULATE ; The contravariant l-
vector position , fo , M =1,2,3,4 ,1is the fundamental

goonatrical objact.

Based on thls last one, we further postulate

4



III. SXISTENCE OF A DIFFERENTIABLE YANIFOLD . There 1is a : li. RELATIVISTIC LECHANICS AND RELATED GEONETRIIS

L-dinensional differentiable manifold, V, ( x? ), homogensous ' . i i

in tha ( contravariant ) space-time coordinates xV : Here, ws shall take as our differentiable manifold any T <

four-dimensional space-time (r)V ( x¥ ) . This manifoid 1s

Following our plan, let us start trying to determins the . B : Sndowod ‘with thajoovariantidynanical feonsptun pP #82C00NCLIE ' ‘ 4
speclfic nature of the manifold V) by means of the incorporation to the Fundamental Dynamical Postulate.

v o ) |
of specific dynamical entltles. We shall analyse separately . t us introduce in our'" naked " manifold a test partlcle {
the cases of relatlvistic mechanlcs ( both of the Geheral and _ \ of zomentun Py, » descriding a world-l.ine characterized by the 4

£ th : sia ‘ oordinat v Following Schbnbar (11 we may assoclate to !
of the Special theories ) and of Newtonlan mechanics. ¢ 98 x . lowlng Sc g s y assoclate |

this partlicle a mass-energy function g2 ( p,u o xP ) which 43
allows tha dafinition of a contravariant vector, py » tangent

to thae particle's world-line

*  he zanifo1dT)V ( x¥ ) 1s " naked ", ab initlo, due to the
:’;\\‘ \".‘\ il {
\\\\\\,, absancae of dynamical objects ( besides the momentum p,_, Yo Post.I)
= ‘ .
N2 e S : .
\‘\-\ \T“\\ and to the absence of any geometrical structure (.besides the
[V { :
= E . existence of coordinates - Post. II )
i
,‘
8 3
i
{
16



Diffarontiating now eg. (4.3) twlice with respect to p. :

P
D= ? (4e1)
i -D Pt)
i - ' . ' , - C p v )
Although the quantity defined above pv has the same dl- i alEl ___?j’___ (%edr g ) = lae 6; 86 = a}-‘ CXA)
: ; : FRY RE \ ¢/ (4.6)
. d o ¢
mansions as the covariant momentum pP 5. no dynamical meaning 3?9 FV aw? Fp

is assigned, a priori, to this contravariant vector. At any : . ) ; -
i g Sinca(* Vu 15 differentiable ( Postulate III ) the

rate, the introduction of this quantity forces the mass-anergy :

2.2 oy
Schwarz-Young conditions hold [ 9 EAP'»‘BPR 20 E/{Ppah )s

function %2 to be written down 1n the usual way, obtalned from | p

| that 1s, tho metric tensor g ( x* ) is symmotric

(4e1) by intesgration

P, Ny ig¥P -A)' :
p , g () =3 (x . )
e JPP OLPV EaR T i

(4.2) which characterizes (r)Vu as a ( pseudo ) Riomannian metrice

> We conclude, therefore, that resorting to the dynamical

For the function B~ to have the usual meaning of energy-mo- sn, .

momentun p ( Dynamical Postulate ), and ascribing to the

mantum, the bilinear form in (L4s1) must represent an Iinnar g ;
t dynamical function g2 ( P, s x? ) the usual meaning of

product, l.e., . ; :

enargy, it 1s possible to endow the manifold (r)Vh with a

P
Ty = p ‘ _ i
E=F b Py (1.3) ﬁ ety

Riemannian metric ( General Relativity Theory cass

( where the constant in (Jj.2) was put equal to zero ). Condi- .

e

Noxt, wa observe that in (L4e1) EZ ( p’J 3 xV ) was d1f-

tion (L. is equivalant to (r)V' being a metric manifold:
(1.3 4 ) L eing petric =ma l forontiated with respect to 1ts covariant variables p‘u , de=-

Y t )
L = b A y ] . R | " fining thus a contravariant vector prj . Obviously, the enargy
P g X v - (u--‘) 1 : 159
w‘nere'gvv 1s tho contravariant matric tensor of (P)Vu 3 ] g . function may also be differentiated with respect to its contra-
satisfying the orthogonality relation f variant varlables x}’ , defining, then, a covariant vector. 4’,; H
p ' ' 2 p : :
' ; [ . QE ) X :
pe 83 € Sy (4.5 ¢ = - (fo > R (T
) » . H v RO |
P X
\\“-,
S \\‘ . y N | # |
\\‘-\.\ N ‘-* ' ) ‘ ' 18

oy

b2

TR

Sy
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And taking (4.3) and (L.h) 1nto_(h.8), we get

(%f’@h be) = (%e:p ) Pe e

If we take the potential functlon ¢F (rix A ) as constant

$ = 9.
¥ oaxV (4.9)

and equal to zero along all the test particle's world-lins ,
py

then
o

world-lina, Since that world-line 1s arbitrary, this 1s equi-

-\) .
= 0, that 1s, g P = constant.along all the -~

v o
valent to saying that gP is constant over all the manifold

A

(r)Vu , that 1s, putting Fby (x ) = 0 over all of (r)Vu

makes the manifold flat.

At this point, 1t seems that the metric of this #1ab lnante
f£o0ld 1s not fixed yet, since we apparently still have‘the freo-~
dom to choose baetween the different possibilitles of a manifold.

with indefinite metric ( signature of absolute value 2 ) and of

S NN
2 manifold with definite metric ( signature of absoluibi§;;ge L ).

SN

N ST —

As we have already said before, it 1is only throgéh-phe transfer
of energy and momentum that we may obtain a knowledge o;\€ib»
space-tine ( geometric ) aspects of. the manifold, It 1s easily
seen(lz) » (13), () that. 1f the flat manifold has a positive

definite metrlc of the kind (-dx' )2 + ( dt )%, this metric

demands that an infinite velocity be physically reallzabdle.

‘B2 D. s

This, in turn, 1s equivalent to admitting that space and tizme
arg entlrely interchangeable, a possibllity which 1s in com-
plete disagreement with our exparience. Therefore, we must

imrose the dynamical principle that there is a 1imiting ve-

"locity for the propagation of physical sighals. Taking this

11imiting velocity as being the velocity of propagation of

the eletromagnatic field, ¢, we immediately conclude that

S ST TN e

the geometry of our flat manifold (r)Vh 1s Minkowsklan.

A

) = 0 over all

Or, In other words : consldering ¢p (x

PR b
v

of (r)Vh 1s equivalent to sﬁating that we can bulld a

global inertlal frame over all the manifold. On the other

A

hand, this hypothesls of consldering 431-) (¥R =0 B

R

along all the particle's world-1ine corresponds to having

X b ) Eonstant along that world-1line; this

P

means that we can define that function EZ over all the ma-

nifold.

20



5. NEYTONIAN NECHANICS ‘AND RELATED GSOMETRY ‘ we defire the gontravariant veetor :

pt = nx! (5.1)

] As befors in relativistic dynamics, the contravariant object

Here, we shall take as our differentlable manifold a four- :

J p1 defined above cannot, a prlori, be {dentified with the govariant

dirmensional space-tirma (n)Vh ( xi, t ), separated into two = eh] . ; ;

. i : fundamental dynamical momentum Pye Howevar, this identification

orthogonal sud-manifolds 3 + 1 : a three-dimensional hyper-
L ; i1s irmmediate once the three-dimensional hypersurface (n)V3 ( xi)

surfaca Vsl x} ) in the space coordinates x-, 1 = 1,2,3 and . i el '

' is petric.(We notlce here that the entire four-dimensional mani-

2 one-dimensional manifold Vl( t ) in the time coordinate

.

. fold (n)Va is non metric (2) ) Thus
xk = t. As in the pravious relativistic case, (n)V, is endo- ) .
Sat pl=gtd (E)py 4 Lk =123 (5.2)

wad with the covarifant dynamical 3-momentum Pye Hogever, while’ k ; C ’
. That 1s, once we may write
in the relativistic case, in the determination of the related ;

n & =gl () : (5.3)
geometry, we resorted to the mass-gnergy function 82( pIJ ,le Vs A )
whera g13 ( XX ) 1s the metric tensor of (n)V3 ( x> ) , satis-

. i} ~
here, in the Newtonlan case, wa shall necessarily have to {
fying the orthogonallty conditlion
employ separately two dynamical functions : mass and gnargy. i ¢
' i - gl g, = 81 (5.1
N f ik k
We shall take as starting point of Newtonlan dynamlcs the \*35»\\n 1 ) ; '
. T T We notice that here , in the Newtonlan case, besides the
Principle of Inartia. Thus, if we introduce a test par%Icle ? o . . .
R ﬁ fundamental dynazical entity - three momentum - , We have two
into our naked manifold, 1ts fundamental characterlstie for N :
' : EE '‘accessory dynamical’quantiﬁies . the mass and the energy. Ye
Newtonlan physics 1s the ona assoclated to its inertla, that ! .
i ) just concluded above that the introductlon of ths dynamical
is, its mass m. i * ¥
; ’ }i‘ concepts of momentum and mass allowed the manifold to be endo-
Lat the test particle be moving.withAvelocity ii = i '
3 wed with a metric. It remains to be seen what 1s the role
axt / at . Using the concept of mass of Nauvertuls (15), '_ i

2l

oy 12X

At

-



rlayed by the second of the accessory dynamlcal concapts : the To introduce the energy concept "into our manifold we Impose

e;ergy. Clearly, it would bs interesting if that function would ] the con@ition that the two bllinear forms (5.5) be identical

be able ‘to fix that met termir g - 1 SE - =
etric, thus determlining the space time (2m)t Py pt=(z2mn)lpl p, = (2m) l12=1 (5.7

compatible with Newtonlan physics.
Ik where T reprosents now the kynotic energy of a pa;ticle og

We repeat now the process already wed he 1 - 4
p el L R L L mass m. Henco, the introductlon of the kynetic -energy implies,

tic case wilth the important difference that here the full ;
. necessarily, that

four-dimensional Newtonian space-time manifold (n)vh cannot . i 3 + (5.8)
Daghz S Dyl : : i

b endowed wit a ric. In the -diraensional etrl L . » 1 cal
a naow ; n mat 3 T o ¢ sub hat 1 that the cont avariant vecter introduced n (5 )
ranifold ( V. we can, however define n inn [)I'Odu t i 1 t1 1 u
) 5 4 : & ks C and by means of the concept of mass 8 den cal, P to a signh,

hence the two bilinsar forms 4
l to tho fundamental dynamical momentum. This also implies that

i

(2m2)t Py P and (2m )t p!

ththf P e T S T i Sach which means that the 3-dimenslional space submanifold (n)v3(xi)

-the same procedure of the <64 1 . L3 o . 1
A ) 3 precé ol V° diffeachrlate 1s plane. Consequontly, since the fourth axis xh of (‘)Vu(x ,xh)

any of the two bilinear forms B ] 1 ! 3 [ ]
/ v G 5? elca iy th respect gt is orthogonal to this hyperplane, this time axis 1§ unique,

¢ovarlant momantum

(g gt) =gl S
(¢

tﬁat 1s, we nust have here an absolute_timg which as we Just

i sew 1s necossarily and Intimately related to the Newtonian

pogs s AR

dynamical concepts of mass ( of Maupertule ) and of ( kynstic )

a
-l Lt 1D w\‘— : : Y
5 5)_, (2w) ‘3“?3\ = (2w ‘3 : AL

( ) energy. As it 1s well known 1t immedlately follows that in
Sincs Vs 1s differentiable, the Schwarz-Young relations

(“)vh the concept of simultaneity 1ls absolute : we have a

hold and therefore the symmetry condition gl‘1 = gJi » which

physics of action at a distance.
.characterizes this manifold as Riemannian, ;

= \\‘ 3 g U
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6. CONCLUSIOR
Contrary to the costumary way of doing physics, we were
presently able to show that starting from a few given dyna-
‘mical guantities we can uniquely determine a certain geome-
try. Thus, general relativistic physics implies general

Rlemannian geometry, while the physics of the spscial theory

of relativity is tied up with a flat Riermann space-tima

( Minkowskl space-time ). Finally,.Newtonlan dynamics 18 uname

blguously bounded to Newtonlan space-time.
What this clearly seems to indicate is that the connection
betweon physics and geometry is even more profound than 1s

commonly thought. By this we mean that not only a certgin'

- N
LIRS

e

ov DR
R . - e,
dynanics”a certaln space-time are inextricably and uniquely

D
bounded together, as stated dbove, dbut, also more imporiant,

sl

that maybe the peint of view taken here 1is perhaps the mosy
fundamental. Namely, that instead of departing from a given
postulated space~-time and then infer the assoclated dynamics,
we should stért by postulating é certaln physics and thep

iry to determine its related geometry. In other words :
geometry should be considered as an aspect of dynamies. .

4  . '

B

T v~y BRN

PSR

k

Instead of thinking, as in geometrodynamics, that geometry 1is

(16)

averything s here, in mi ometry, we take the conjugate

e 17,

peint of view : dynamics is everything. This point of view =

an,

reninds us of Lelbniz

246

T L ie s o on T oirirarait S



{ : : _' ] Physics - Lectures on ueneral Rel ativixy -

(1) Schbnberg, ¥. - Private communication i
_ Prentice Hall (1964)

(2) Cartan, R. - Ann. Bcole Norm. Sup., [0, 325 (1923) and A
. 13) Dixon, Y. G. - " Specilal Relativity - The Foundation of

a1, 1 (1924
. Macroscopic Physics " -Canbridge Unilversity

(3) Cartan, B. - Bull. Math.-Soc. Roum. des -Sciences , ! (1578)
: : ress

69 (1933)
= 15) langevin, P. - " La Physique Denuis Vingt Ans "

Do tmne: ARG (1923)

(4) Schouten, J. A. - " Tensor Analyels for Physlcists ",

Clarendon Press, Oxford (1951)

1%)
. ) 1?) Videira, A. L. L. , Rocha Barros, A. L. and Fernandes,
(5) SchBnberg, M. - An. Acad, Bres. Ci., 28, 11 (1956)

N. C. - to be published
(6) SchBnberg, M. and Rocha Barros, A. L. - Rev. Union :

0 16) wheeler, Je. A. - " Geometrodynamics * _ Academic Press,
-Mat. Argentina, 20, 239 (1960)

: New York, (1962)
(7) Arnold, V. - ™ Les methodes mathematiques de la

'17) Costabel, P. - " Lelbniz and Dynamics " , Hermann,
mecanique classique " - Ed. Mir-

Paris, (1973)

Koscow (1976)

(8) Chevallay, Ce Ce = " The algebraic theory of spinors

Columbia Univ. Press., N. York (195L) i ; | : )Z«A‘ ( é 9 ;2
(9) Thomas, G. H. = Riv. del Nuovo Cim., 3, L (1980) - - : : ) Dotz
9) Thomas v. del Nuovo 53 | \/}}'L/VV\ ( !cl‘gj : }va

(10) Stesnrod, N. - " The topology of fibre bundles ", Princeton i ]
New Jersey, (1951) . o %

(11) SchBnberg, M. - Acta P'nysT Austriaca, 33, 168 (1§73)

(12) Trautman, A. - Brandels Summer Institute in Theoretical

23 b
: ' : 28



