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Super-symmetry is studied with help of the Atiyah-Kahler

Algebra of differential forms.

More than 25 years ago, Mario Schenberg has investigated
inaseries of papers] on '"Quantum Mechanics and Geometry' the sig-
nificance of geometric algebras for the formulation of the basic
laws of particle physics. Recently, the problem of lattice ap-
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proximation of QCD 1led us to the attempt to describe matter

fields by a differential geometric generalization of the Dirac e-
quation due to E. Kéh]ers. This description of fermion fields in
terms of a geometric algebra is very close to Schenberg's ideas.
No .wonder that the vivid memories of my discussions with Prof. M.
Schenberg greatly insbired my work on this topic. In this spirit |
want to dedicate to Prof. M. Schenberg on the occasion of his 70th
birthday this short note on geometric superalgebra. It should open
a particular viewon the geometric meaning of supersymmetry6, which
in these days plays such an important role in the discussion on a
7

universal theory of matter’. | want to thank Prof. M. Schenberg

for a long lasting inspiration.

1. ATIYAH-KAHLER ALGEBRA AND DIRAC-KAHLER EQUATION

E. Kahler enlarged the structure of the wellknown Grass-
mann algebra of differential forms by the introduction of an ad-

ditional associative product ('"Clifford product'") defined by

de¥ V dz¥ = dz™ A dx’ + gUV (1.41)

A denotes the usual antisymmetric product of the Grassmann algebra,



guv is ‘the metric tensor of the underlying Riemannian manifold. A
space of inhomogeneous forms {¢} in D dimensions (D even)
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equipped with wedge product énd Clifford product with properties

following naturally from Eq. (1.1) is called an Atiyah-K3hler al-

8,9

gebra In the notation (1.2) H runs over all ordered index

sets H = {uz,...,un} WHTEIRL 0™ S U0 ey e <l T D= .
Within the framework of an Atiyah-Kahler algebra it can
easily be shown that the Dirac-Kihler equation (DKE) in flat space

(f.i. with Minkowski metric -~ 1)z
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(d-686-m) ¢ = 0 (1.3)

where d means exterior differentiation, & 1is the generalized di-
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vergence, is equivalent to 2 or

uncoupled Dirac equations

this we reduce the left regular representation of the Clifford al-

gebra with help of the Dirac matrices Y“ by introducing a ''Dirac
basis" Z(b)

a

o = 1 oPl(g) 2{P) (1.4)

a
a,b .

with the property of the matrix 2Z = (Zéb))

dz* vz = Mz, 7 Wt = g (1%5)

The explicit construction of Z follows the standard methods of

group representations. For this one considers the elements + dx

with v-multiplication as a group CD of order ZD+1. The inverse
h

: Hy-1 ( K " HK 1

is (dx") = (-1) 2) dey , dzy = GHde , with G the metric

tensor extended to the forms of higher degree. Then one gets the

result

oS
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which leads to the transformation formulas

o (z) = Trley®T) ®(b)(x) Surle Y o (x) vA (173
H a H
It follows immediately from the form of the DK-operator d-6 =
dz" V au and these formulas, that the Dirac components @;b)(x)

of a solution of the DKE satisfy the Dirac equation

(Y“au-m) Q(b)(x) = 0 bt 2,005 ...2D/2 (1.8)

The consideration of the y-matrices as representation of the Clif-

ford group CD leads to the following convolution formula

(b) (a) D2 i@ b
Z Lyt A it 2, o3 (1.9)
it will turn out that this relation between differential forms is

the key of a special realization of supersymmetry.
We conclude this short glossary of the Atiyah-Kahler al-
gebra by listing some properties of the local scalar product (¢,w)x

for later use:

(¢,0), = ) ¢, (x) v () : (1.10)
H
If the context allows it, we omit the index x . It is
(6,9) = (b,0) = (40,49) = (B¢,BY) (1.11)

A is the isomorphism of the Atiyah-Kahler algebra Achﬁ =(-1ﬂ1dx%
: h

B the anti-morphism B Fli et (—1)(2) dxH, B(dxH\/de)==deK’Vde€

etc. With respect to V-multiplication (¢,v) has the following

symmetry:



(¢ V w,9) = (4,9 V Bw) , (v V o,0) = (9,80 ¥V 9) (1,12)

The scalar product allows the formulation of the following com-

pleteness relation:

¢ = g (¢,dz™) dz (1. 18)

Finally we want to mention the Formula]0
- 8(¢,dz" V ¥).dz = (9,(d-8)y) + ((d-8)9,¥) (1.14)

which is very important for the construction of conserved currents

from solutions of the DKE.

2., BOSON-FERMION CURRENTS

The Kahler formalism represents Dirac fields, i.e. fer-
mions, by coherent superpositions of inhomogeneous differential

forms. On the other hand, forms describe in a natural way tensor

fields which are bosonic. This similarity strongly suggests the in

vestigation of supersymmetry between bosons and fermions in terms
of Dirac-Kahler forms.

In order to pursue this idea, we consider solutions of the
DKE

(d-86-m) ¢ = 0, (d-8-m) v = 0 (2.1)

where 1y describes Dirac fields according to Eq. (1.7,8). The homo-
geneous components ®u1..'un(x) of ¢, Eq. (1.1), we treat as ten-
sor fields, and therefore as bosons. The associativity of Clifford
-multiplication and the formula d-6 = dz¥ V Bu implies that by
right V-multiplication with constant forms C solutions of the DKE
get transformed into solutions. Thus we may use the formula (1.14)

for the construction of conserved boson-fermion currents from the

solutions of Eq. (2.1):



jﬁ(x)= vy Vce,de V9 : d = A¢
(d-86+m) ¢ = 0 (2%2)

Are the charges related to these conserved currents the generators
of supersymmetry? We approach this question by analyzing the co-
variance properties of the boson-fermion currents jﬁ with respect
to Lorentz transformations. The DKE is invariant under the Lorentz
group; which transforms the components of ¢ as antisymmetric ten-
sor fields. The infinitesimal rotation in the u-V-plane may be

written as

W - [x“a"_xva“] o + —-é— [s“v Vo -0V s“v] (23D

with SUV = dxu v dxv . How is this tensorial transformation 1aw

compatible with the spinorial transformation of the Dirac fields

contained in Y ? According to Eq. (1.5), —%— SUV V ¥ represents
an infinitesimal spinor transformation of the Dirac components:
—%— SUV V y —%— YUYV w(b) , u# V. Hence the Lorentz transforma

tion of fermion forms is represented by

b = lata¥ s g —g— s*Voy oy (2.5)

Right multiplication of Y by SUV:

e LA Ui P
mixes the different Dirac fields. Such transformations induced by
Clifford right multiplications are called sometimes 'Susskind flavour
transformations'. Therefore a tensor transformation can be con-
sidered as a product of a spinor transformation and a corresponding'
SLiE25:C) S-flavour transformation. The transformation properties of

currents follow from those of the forms. Tensor - transformations

leave the inner product (1.10) invariant. Hence currents constructed



from bosonic forms ju(x) = (¢’ ,dxu v $)x transform as tensors

il iy le) = (il = apitol jp(@) + &b 7y ss a‘é M) 2. 5)

This might be confirmed with help of Eqs. (1.12) and (2.3). For

the boson-fermion currents we are interested in expressions which

transform like super-currents:
uv . - WaVar 2 Vsl - 5 Viaeis\s - o NS
L Jp,a(x) = (x"93 x 9") Jp’a(x) + Gp J’a(x) GD J’a(x) +
vl PHGEES e (2.6)
2 a psa .

Writing for C in Eq. (2.2) a constant form Wa , then a straight-

forward calculation using (1.12), (2.3,4) leads to the requirement

WV gL (yMNHe (2.7

a a
It follows immediately from (1.5) that this is satisfied by

(b)

L (B) i
a a

= BT 2 (2.18)

where T is defined by TYUQFJ = YUT.

Now we can formulate more precisely our program. We want
to know if there are generators of supersymmetry which are linear

combinations of boson-fermion charges of the form

¢ = J dz [w VW, dz VG (2.9)

a
where y is a fermionic DK form satisfying the DKE. ¢L are bosonic
solutions of the DKE like

mA + dA aua“ il e
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=) ¢v (d-6+m) AuV dg? A dxv etici. (2.10)



In two dimensions the forms (a) and (b) span all solutions. Un-
fortunately we can give in this note an answer to this question

only for the most simple case of real DK forms in 2 dimensions.

3, N=2 EXTENDED SUPERSYMMETRY IN 2-DIMENSIONS]1

In this section we want to demonstrate that our conjecture
of a close connection between the boson-fermion currents defined
above and supersymmetry is true for 3-dimensional real Dirac-Kahler

forms. For this we consider the scalar (pseudoscalar) boson-fermion

(£)s

charges Q, (Q(k)p) of the form (2.9)

b

| (3-1)

which are derived from the conserved boson-fermion currents of type

()

(2.2). The constant forms v, are defined similar to Eq. (2.8)
()5 , (%)

va = Taa‘B Za Tki (3:2)

The y-matrices in the definition of Z, Eq. (1.6), are a real

unitary representation of the Clifford algebra of 2-dimensional
Minkowski space. Our treatment is therefore covariant with respect
to real, orthogonal equivalence transformations. The solutions of

the bosonic DKE in 2 dimensions are

¢S = ma® + a4® , ¢p = - G(Ap.dxal) + mAp.dx01 (3.3)

L 2,L

b ire shiree Fleldsh aua“A _dmlal =¥

where ﬁ

We shall show that the

a

Q = @

a a

satisfy the anticommutation relations of the N =2 extended super-

symmetry
(i) »Qék)} 01y REk

{q, . fHE e By il (3.5)



H and P are the Hamiltonian and momentum operator of the system
consisting of two real Dirac fields: a scalar and a pseudoscalar
field described by the DK-forms ¢, ¢ = ¢s + ¢p .This is our main
result.

The anti-commutators of the boson-fermion charges (8;.41)
follow from the free field commutation relations of bosons ¢ and

fermions y . These can be written as bi-differential form53’12’13

{(v(x),v(x)} = 2(d-6+m) A(x-y) A y dxH.dy v dya
Y x 7 H

6% (2),6° (y) ] .

I (d-6+m)x (d—6+m)y A(x-y) (3.6)
[6P (z),0P ()] = —%— (d-8+m) (d—6+m)y A(x-y).dxoz.dyOJ
[P (2),0% ()] = 0
Here dxH.dyK denotes the basis elements of a direct product of

Atiyah-Kahler algebras at different space-time points. The canoni-
cal equal time commutation relations contained in (3.6) lead to
anticommutators, (commutator), for scalar products of fermion (bo-

son) forms with C-number forms:

(

dzl (v,F) ,[ dyl (v,6) £ i J dx? [dxo VG, s ,FJ
X y X

/

[ s S
[ =’ (7,3P) . ldyl (G,Ep)y} - del[alpo(x)clu) + 2,7, (2)6y ()]
’ 0 1 Z 0

+ im l dxl[F¢(x)GO(x) - FO(x)G¢(x)] (379

1 01 01 1

These formulas are the main tool for the calculation of the anti-
(£)L

commutators of the Qa

According to Eq. (3.1), the boson-fermion charges Qéi)L

are also integrals over scalar products of two forms, like the ex-

0



pressions in (3.7). However, both forms ¢ and y are quantized.

We have to use the operator identity

{ya,¢B} {y,6} 4B + ¢v [B,A] = v¢ [4,B] + {y,¢0} BA

for [¥,4] [¢,4] = [¥,B] = [4,B] = 0 (3.8)

Then Eq. (3.7) permits a straightforward calculation of the

(£)L L'
a }

k
{Q ’Qb Before we make some comments on the somewhat

lenghty calculation, we state the result

+ PUAT) B01st0 . ppp g L L =i SSHE
{Q(i)S,ngk)P} = Fab[AS,AP] SRS Pyt Ty (3.9)
with
H[A] = —é—-J dxz [ﬂi ; (BJA)Z + m2A2] : energy of a scalar field 4

""mi xed'"" Hamiltonian of two Dirac fields contained in ¥ .

P[4] = J NABZAA dxlz momentum of a scalar field 4.
@ 3@y o L@ (V@) 5, v @) 4 en)
ORI . A OR L ® (3.10)

Our main result, namely that Qét) defined in (3.4) are generators
of supersymmetry satisfying (3.5), follows immediately from (3.9).
The following facts must be used in the simple calculation: (a)

yo = * {_?é] in a real representation of 2-dimensional y-matrices,



T 0

(b) 4= = A implies 4 - ¥y ‘4Y0 = trace 4.1, (c) At = = A implies
0

A4 + YOA‘Y = 0, and finally
B o= #14%1 « m1aF1 o« mpe(D) (D gy (@) (@), (3.11)

and similar for the momentum P.
In order to illustrate the algebra contained in the de-
rivation of Eqs. (3.9), we include in this note a small part of the

explicit calculation. Eq. (3.8) combined with Eq. (2.7) yield

{QC(Zi)S,Q(k)S} = + % J dx? {d)SVBA v(gi) deo,devESVB vék)]
X
(1)
¢ L del [deJleva(k)deo,(l—A) d:z;oVBllvaa(i)] (1)
161 x

, mi fdxl{{dxf’vwvvéi)J(x,¢)[dx0vxpvvék)](x,o)- ((i,a)H(k,b))J
(#14)
With the different rules for calculations with the scalar product

(1.11), (1.12) we get

(1) = -+ j da’ [c,‘os Vea v P vas® v ofR) as v FS )
Using the convolution formula (1.9) in the form

pao{ v ax® v o o pal v B gt (3.12)
this becomes

(ry = % J da’ (¢S Vs ¥ zéb) , dz_ v 5‘9} stk

Now we insert the definition of Z, Eq. (1.6), which leads to

M) = —é— f dx? [B o Vvde?veSy dw_ ,dxH} ok stk

We remark that the components of the Clifford product
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B ¢~ V dxo

v ¢S V dx

! (mA-'c)oAde—BZAdxl) v (+mA+30Adx0—81Adx1)

01

)2 2

+ m%4%).1-mo 4%z’ + (3,40,4+ 0,40 ,4) dz

P ((3,4)7 + (3,4 43,

(3.13)

are essentially the energy and momentum density. Hence

(Z) ‘= [H[AS] 8., *+ A A=y O e

The evaluation of 1l and 11l follows a similar line. The final re-

(Z)s (k)s}

sult is {Qa ,Qb

as given in (3.9). We would like to point
at the important parts of the calculation: (i) The use of the con-
volution formula (3.12), and (ii) the V-factorization of the energy
-momentum density. In these steps the significance of the Clifford
algebra gets apparent.

In finishing this short description of supersymmetry in

terms of Dirac-Kahler forms, we give the supertransformations of ¢

and ¥ . With help of Eq. (3.7) we get immediately

{Q(i)L , U(x)} = sl ¢L(x) V 4B v(i) V. dx? L = 8,P
a ;/E a
210888 48 (m)] = - =L (m4 QYRB ONE)
a 1 JE : 2 a  'x
A AR (e —/1_— (m-38) (v, dz’? v B vc(li))x.deJ
8
21a 012 WP (), =i 0 p o AT e (3.14)

4, THE SIGNIFICANCE OF THE RESULT

General relativity, the success of gauge theories of strong
and electroweak interactions, and the new development in supersym-
metry reveal more and more a deep connection between geometry and

fundamental dynamics. The recent result that N = 4 extended super



14

symmetry gaudge theory in L-dimensions is ultraviolet finit , may
be considered as additional evidence in favour of this conjecture.

With this in mind, the investigation of the relation be-
tween fhe geometric algebra of differential forms gets interesting.
We showed how N = 2 supersymmetric free fields in two dimensions
can be naturally embedded in the extension of the calculus of dif-
ferential forms due to E. Ké'hler5 and M. Atiyahs. The methods de-

veloped here may be used in higher dimensions. Because the content

of independent Dirac fields in a 4 dimensional Dirac-Kahler form
is the same as that of an N = ¢4 - supermultiplet, there is even a
superficial similarity to the 2 dimensional case discussed here.

This case is under investigation. Another relation between a special
supersymmetry and Dirac-Kahler forms is described by I1.M. Benn and
R.W. Tucker15.

The problems of lattice approximation of quark fields in
QCD did rise the interest in the Dirac-Kahler formalism. The geo-
metric lattice contindum correspondence developed in this context
should also become a systematic base for the differént attempts‘é’17
of a lattice approximation of supersymmetry. In this respect the
work by H. Aratyn and A.H. Zimerman on the 2-dimensional Wess-Zumino
model comes close to the intensions presented in this note. It is
possible to get their ad hoc .ansatz by specializing some of our
formulas. In two very important points their paper exceed the

scope of our more systematic considerations. It includes interact-

ing theories as well as a special lattice formulation.

Thus the shortcoming of our paper becomes evident: it is
incomplete, it only marks the beginning of a program. In spite of
that, | hope that | succeeded in demonstrating how some of the

basic ideas of Prof. Schenberg have developed in the last 25 years.
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