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SUMMARY
It is shown that the topological singularities and bifur-
cation processes deriving from the concept of structural
stability determine the most significant phenomena observed
in both structure formation and structure recognition. From
this emerges a cohprehensive and unifying theoretical frame-
work for the description of nonlinear physical systems which,
when passing through instabilities, exhibit critical and
analogous behavior. The basic concepts of sinqularity and
bifurcation theo;y are outlined and applied to a variety of
fields. These include the inverse scattering problem, non-
linear phonon focusing, interacting spatio-temporal patterns,
optical bistability, and critical phenomena in condensed
matter and particle physics. An outlook is given on future

developments.
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I. INTRODUCTION

The increasing diversification of ;he physical sciences
during recent years and the complexity of observed phenomena
have made it more and more imperative to search for unifying
physical principles. These reveal themselves in a wealth of
fascinating analogies discovered in the critical behavior

of dynamical systems of various genesis which, when paasing
through instabilities, suddenly exhibit new spatio-temporal
patterns or modes of behavior.

The phenomenological picture looks indeed seductively general.
There is a striking similarity among the instabilities that
lead to convection patterns in fluids, cellular solidifica-
tion fronts in crystal growith, geophysical textures, vortex
formation in superconductors, phase transitions in condensed
matter and particle physics, biological and chemical patterns
or rhythms, and so forth. Many of these systems are extremely
interesting for scientific and technological as well as
aesthetic reasons. Their common characteristic is that one

or more significant behavior variables or order parameters
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undergo spontaneéus, large and discontinuous changes or
cascades of these if slow, competing but continuously driving
control parameters or forces cross a bifurcation set and.
enter conflicting regimés. As a consequence, én initially
quiescent system becomes unstable at a critical value of

some control variable and then restabilizes into a more com=-
pléx space- or time-dependent configuration. Primary bifur-
cations induce limit cycles, spatial patterns and spatio-
temporal patterns in the form of standing waves when the
bifurcation branches remain disjoint. If other controls

cause these branches to interact, multiple degenerate bifur- :
cation points produce higher instabilities. Then the system
undergoes additional transitions into more complex states,
giving rise to traveling waves, hysteresis, resonance and
entrainment effects. These ultimately lead to states which
are intrinsically chaotic. In the vicinity of degenerat;
bifurcation points a system becomes extremely sensitive to
small ambient factors like imperfections, external fields

or fluctuations that lead to symmetry breaking. This in turn

.




enhances the system's ability to perceive its external environ-

ment and, adapting to it by capturing its asymmetry, to form
preferred patterns or modes of behavior. Most prominent among
the theoretical programs venturing into the area of general
principles are Prigogine's concept of dissipation struc-
tures [1], Haken's synerggtics [2] and Thom's catastrophe
theory [3]. Among these Thom's program has both the poten=-
tial to provide a geometrical explanation for the variety

of analogies encountered in the critical behavior of éystems
of different genesis and, aé we shall show, also the power
to predict new phenomena.

ﬁature surpriseg us with the fact that the tremendous amount
of physical data and results can be condensed into a few
simple laws that summarize our knowledge. These laws are
essentially qualitative. In mathematical terms "qualitative®
means not "poorly quantitative” but topologically invariant,
i.e., independent of a coordinate description. Common to

analogous critical physical phenomena, besides their
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qualitative simiiarity, is their universality expressed by
the fact that the details of the interaction of a system
undergoing spontaneous transitions are often almost irrele-
vant. This calls for a topologically 1nvarian£ description

of the phenqmena under consideration.‘when Feynman discussed
turbu£ence he observed that "the next great era of awakening
of human intellect may well produce a method for under-
standing the qualitative content of complex equations.*”

R. Thom has undoubtedly opened the door to it.

The basic role physics plays in the sciences may be traced
to the fact that most systems and structures in nature enjoy_
an inherent physical stability properly: They preserve their
quality under slight perturbations, i.e., they are étructu-
rally stable. Otherwise we could ﬁardly think about or
describe them, and today's experiment would not reproduce
yesterday's results. We do not know how it got that way: But

accepting structural stability as a fundamental principle,

universal critical physical phenomena have a common




topological origin. They are describable and classifiable by

stable unfoldings of singularities of smooth maps, i.e., in terms

of topological normal forms that act as organizing centers for
the bifurcation procésses exhibited by dynamical systems of
various genesis. We use the term bifurcation to refer to
changes in the qualitative structure of solutions to diffe-
rential equations. A phenomenon is said to be structurally
stable if it persists under all allowed perturbations in

the system. Most of the nonlinear equations of physics are
not amenable to a quantitative analysis and few, if any,

are completely known, so that it is often not clear for
which particular effects one ought to look. Since they
derive from geometrical invariance principles and conser-
vation laws they must possess structurally stable solutions.
To determine these provides us with conceptual guidance to
single out the most significant phenomena and to answer the
basic questions of structure formation and sFructure recog-
nition which we address in this paper: (i) How do structures

emerge from a structureless environment and how can we

classify the transitions between the hierarchy of possible

configurations? (ii) How do we recognize and reconstruct

unknown structures from complex recorded data and how can

we classify and interprete them? (ii) is the inverse prob-

lem of (i). Since the evolution of structures is intrinsi-

cally tied to a recognition and adaptation process, and

since both are geometric phenomena, uncovering their common

topological roots raises very difficult but fascinating
questions that promise a great challenge for‘future
research.

In pursuing the goal of a geometrization of physics I begin
with a review of the basic principles of singularity and
bifurcation theory and then apply them to a variety of

problems in structure formation and structure recognition

both at the microscopic and macroscopic levels. I have tried

to make the various chapters self-contained and to reflect
the actual situation in this field of research. However;
there is no attempt at completeness, neither in coverage

nor in references.
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II. STRUCTURAL STABILITY, SINGULARITIES AND BIFURCATIONS

1. Structural Stability

In this section we outline the basic principles of singula-
rity and bifurcation theory, referring to [4]-[7] for further
details. A physical system is said to be structurally stable
if it preserves its quality under slight distortions. In par-
ticular, a nonlinear dynamical ;ystem k(t)=F(x,}), KERn, X€ER,
is structurally stable if the phase portrait of the perturbed
system X=F+§ is topologically equivalent to that of the unper-
turbed system. Since in a structurally stable system.nothing
new happens when it is perturbed, we are interested in unstable
systems whose perturbation gives rise to new modes of behavior.
Bifurcation occurs in a parametrized dynamical system when a
variation of a parameter causes a qualitative change in the
behavior of solutions, e.g., when an equilibrium splits into
two. Catastrophe occurs when the stability of an equilibrium
breaks down, causing the system to jump into another state.

The pitchfork bifurcation provides a familiar example.

The stationary states %=0 of the system i=GEx3-Ax can be

represented by the bifurcation diagram of Figure 1. The

trivial solution branches at the bifurcation point-(x-o,
A=0) which is a gingularity of G. The bifurcation diagram
of the Hopf bifurcation of a periodic solution from a sta-
tionary one follows from Figure 1 by rotating the parabola
around the A-axis above a (x,y)-plane with y orthogonal to
(x,1). Introducing polar coordinates r,8 in the (x,y)-plane
the canonical equations are é=1, t=-(r3-lr). When A<0, tbe g
origin is an attractor (all trajectories spiral into it)s
when A>0, the radial component is outward for r<vyA and
inward for r>/\; the origin becomes a repellor and there is
a stable limit cycle thrown off with r=/A. The point A=0 is
a Hopf bifurcation point, the amplitude grows on a paraboloid
and the origin is an organizing center for the singularity.

A Bifurcation problem consists of the solution of a system

6(0,0)=0,,

of equations G(x,\)=0 with'de(o,0)=0 where G is a germ of
ac mapping of R"XR into R™. The point (x=0, A=0) is called
a bifurcation point or a singularity of G. This does not neces-
sarily mean that solutions x(A) branch at the bifurcation
point but merely implies that the solytion diagram changes

its qualitative form under small perturbations of G. For

example, a hysteresis point, i.e., a point where the solu-
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tion has a vertical tangent, is a bifurcation point since

an appropriate perturbation changes the solution type from

a monostable to a bistable one. At a bifurcation point a
system becomes structurally unstable. The main result of
singularity theory is that, in the course of possible bifur-
cations, a system does not become unstable in an arbitrary
way. Instead, the bifurcations occur in certain definite and’
indeed classifiable ways, Consequently, a structurally unstable
event can be embedded into a structurally stable family of
maps or systems. This family is parametrized by a number of
Pnfolding or control parameters. The number of parameters
that is necessary to embed a given bifurcation into a stable
family is called the codimension of the bifurcation or singu-

larity. Thus, a structurally unstable event may occur within

a structurally stable process.

2. Catastrophe Theory

Thom's "elementary catastrophe theory" [3] provides the basis

for what is now called topologically invariant bifurcation

theory. It can be thought of as describing the stable bifur-

cations of the stationary states of a gradient system

- 10 -
ii=af(x,a)/axi with x=(x1,...,xn)ERn when the parameters

- in the "potential" function £:R"xRT+R vary.

a=(u,v,w,...)ER
Catastrophe theory deals with the classification of degene-
rate singular points of smooth real-valued, parametriied
families of functions of n real variables. The singular

points of a smooth function £:R"+R are the points x where

the differential vanishes: (df) (x)=grad f(x)=0. The function

f has a nondegenerate (or Morse) singularity at x if the
second differential (dzf)(x)?(azf(x)/axiaxk) is a nondegene-
rate quadratic form, i.e., if the Hessian H(x)=det(d2f) does
not vanish. Using suitable local coordinates, the function £
can in some neighborhood of a nondegenerate singular point

be represented in the Morse normal form f=const +E(txiz).
Morse singularities are stable in the sense that a small per-
turbation g of f (with g, dg, dzg near f, df, dzf) also has a
Morse singularity. On the other hand, every degenerate sin-
gular point x of f, for which H=0, bifurcates into some non-
degenerate points after an arbitrarily small deformation.

The function f(x)=x3/3(x€R) and its perturbation ft(x)=x3/3+tx

furnish a familiar example. We see that degenerate singular
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points appear naturally if the function depends upon para-
meters, i.e., if one considers not an individual function
but a parametrized family of functions. Then it is possible
for a non-Morse function to appear as a member of a "stable
family". In the above example, f=x3/3 is not stable at x=0
because a small perturbation of it, generated by adding tx,
radically changes its shape when t is varied: for t<O, ft(¥)
hag two extrema while for t>0 it has none. Thus, the family
ft(x)=x3/3+tx is stable as a (t-)parametrized family near
x=0. We call ft(x) the unfolding of £, t an unfolding para-
meter, and t=0 a catastrophe point of the family because it
separates the stable regions tS$O. Formally, one may continue
playing by considering the function f=x4/4, X€R, and its un-
folding (or perturbation) fuv(x)=x4/4+ux2/2+vx near its sin-
gularity x=0. The singular points are given by an overhanging
cliff S, Figure 2, given by fav(x)=x3+ux+v=o, in (x,u,v)-
space, and projecting the tangents (parallel to x) of its two
edges, given by fav=3x2+u=0, vertically onto the(u,v)-plane by
eliminating x from the two equations, one obtains the familiar

cusp equation B:4u3+27v2=0, viz., the bifurcation set of Fig. 3

2=

‘on which two stationary points (a minimum and a maximum)

of fuv coalesce.

We have embedded f into the unfolding fuv' While f is a very
fragile object because its singularity is degenerate, the
shapes of fuv remain basically the same inside or outside

the cusp, respectively (two minima of fu if u and v vary

v
inside B, one minimum of fuv if u and v stay outside of B):
fuv remains stable under small variations of (u,v) not cros-
sing B. B is a singularity of the map of S onto the plane
made up 5y (u,v). Intuitively, deforming S smoothly does not
change the qualities of the "cusp catastrophe®. Take a two-
dimensional manifold MCR3. Lift it into R3, deform it as you
please and map it vertically down onto Rz. You will discover
four sorts of points on the fiber M: (a) regular points which
lie smoothly over R2, singular points, i.e., some on the
edges of folds (b),and some marking the origin of an overhan-
ging cliff (c), and, finally, (d) points which resemble none
of the former. Deform the fiber slightly near any of these

points. A bit of experimentation shows the following: The loca-

tion of points of type (a), (b), and (c) will be shifted a bit
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but their "quality" remains the same and they cannot be made
to disappear under such small deformations of the fiber. But
all the messy points of type (d), or worse, turn under small
deformations into points of type (a), (b) or (c). This is
an experimental "proof®" of the Thom-Whitney theorem: Consider
the space F of all 2-parameter families of functions
f(x;a,B) and their singularities df=0. Ccall f€F structuraily
staple if it has a neighborhood of equivalents. Then the
only singularities of the projection M+R2 are folds and cusps.
This means that the most complicated behavior that can happen
locally is the cusp. While this is a geometric fact, its phy-
sical meaning is obvious: If a system with one behavior
variable or order parameter x is slowly driven from one phase
to another by a control variable v, and if an orthogonal
drive u sets in to split the quality of the phases (different
states of order or symmetry, etc.) and if a phase may persist
for a while with the transition to the other delayed, then
the cusp catastrophe is intuitively the simplest model and,

as we have seen, the least fragile.
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Catastrophe theory classifies the singularities of maps
£:R™+R into equivalence classes. Two functions f and g in
the same class are called (righ;-) equivalent if
f(x)=g(¢(x))+const, where ¢ is a diffeomorphism. Funcgions
from different classes differ by the number of control or
unfolding parameters a and by the form of the unfolding terms
which have to be added to a function in order to embed the
degenerate singular point into a stable family. The number of
terms is the codimension of the singularity of f. Then Thom's
theorem states: Let f:R"XR*+R be a parametrized family of
smooth functions fa:Rn*R, where aERr. Let r£3, a=(u,v,w),
(x1,x2,...)=(x,y...). Then almost all such f are (up to the
addition of a Morse function) equivalent to a function P(x,a)
T P=

out of the following list: [A P=x3+ux (fold); (A

21t 3]
4 2 v .5 3 2

x +ux“+vx (cusp); [A4]: P=x"+ux"+vx“+wx (swallowtail);
[D:]: P=x3+xy2+uy2+vx+wy thyperbolic umbilic); [D;]; P=xy2-x3

+ux2+uy2+vx+wy (elliptic umbilic). The list can be extended
to r>3 [8]. The polynomials P(x,0) are called normal forms of

the singularities and the associated families P(x,a) are their

unfoldings. We denote by M=((x,ay|df(x,a)=0) the catastrophe
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manifold of f. I={(x,a)|df=0, Det d2

f=0} is the singularity
set, where Det dzf is the Hesgian of f. The projection
X:M+R" of M on the bifurcation set B={a| (x,a)€L for xeRr"}
gives the familiar Thom diagrams of Figs. 3-6. When a varies
transversely through B, the topology of the extrema of f
changes in a neighborhood of the origin. We shall show below,

in a physical context, that catastrophe theory classifies

surface evolutes (Sec. III).

3. Imperfect Bifurcations

Bifurcation is, in a sense, an idealized, nongeneric pheno-

menon: diagrams such as the pitchfork in Figure 1 are struc-

turally unstable, and small perturbations of the mapping will

break the bifurcation diagram. The two branches of the pitch-

fork may, e.g., be interpreted as the primary right or left

displacements of an elastic vertical column buckling under

a load X. ° Also the two branches may represent the two

magnetization directions in a ferromagnet below critical

temperature. Since imperfections are present in any physical

system we should require that a description of the transition

point include the effects of variations (impurities, imper-

- 16 -
fections etc.) in the problem other than the distinguished
bifurcation parameter. If the idealized bifurcation problem
is determined by G(x,A)=x3—Xx=0, for examplei what is the
most general form of the solution structure under small per-
turbations of the system? Golubitsky and Schaeffer [9] have
addressed this question using the theory of singularities
of mapping which goes under the name of imperfect bifurcation
theory and generalizes Thom's theory.

Consider a bifurcation problem

C(x,X) =0 (2.1)
with d;G(0,0) = 0, where G:Ran+Rm, xERn, and A€ER is a dis-
tinguished, externally controllable bifurcation parameter =--
distinct from others describing perturbations -- which repre-
sents the control variable in a physical experiment. We may,
for example, assume that (2.1) 1is the equation for the ampli-

tudes x of the solutions of a system of nonlinear evolution

equations su/3t=F(u,)) obtained by a Lyapunov-Schmidt reduction
(Sec. IV). In [9] a technique has been developed which permits the

determination of all possible qualitatively different bifurcation

diagrams in a neighborhood of the singularity (x=0, A=0)
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which are stable against perturbations of G by changing coor-
dinates in such a way that G reduces to polynomial normal
forms. The reduction of a system of evolution equations to
an algebraic system (2.1) is not unique and the possibility
arises that two bifurcation problems G and G' assume different
forms although they possess qualitatively the same solutiong.
We call G and G' contact equivalent if there exists a smdothly
parametrized family of invertible matrices T(x,A) on R™ and
diffeomorphisms x+X(x,X), A+A()) such that

G' (%,X) = T(x,))-G(X(x,)),A(A)) ' (2.2)
?he distinghuished parameter A is not allowed to mix with the
order parameters or state variables x. The topology of the
bifurcation diagram B(G)={(x,})|G=0)} remains invariant under
(2.2) relative to the A-coordinate. A typical example is this:
Let G(x{X) be a bifurcation problem such that at X=A=0 we
have G=GX=QXX=GA=O and GxxxGxA<O' Then G is contact equiva-
lent to the pitchfork x3~lx.
To characterize all perturbationsof G which respect the
special role of ) amounts to finding a universal unfolding

and then enumerating allgualitatively distinct bifurcation

- 18 -
diagrams. Their number is called the codimension of G.
Denoting a perturbation of G by Gu=G+Hu with a perturbation
term Ha with Ho=o, we call the unfolding parameters imper-
fection parameters. Gy is a stable unfolding of G if, for
any other unfolding GB,there exists a smooth map a=y(B)

such that G is contact equivalent to G.. Ga is universal

v(B) B

if it is stable and possesses the minimum number of unfolding
parameters needed for stability. With these definitions we
have the following theorem [9]: A bifurcation problem of
finite codimension is contact equivalent to one described by
polynomial normal forms whose universal unfoldings are also
polynomials. The list of norméi forms presently known'is, how-
ever, not yet as complete as is the Thom-Arnold list. As an
example we show in Figure 7 a typical bifurcation diagram for
the perturbed pitchfork with universal unfolding Ga=x3-xx

+a x2+a2. The imperfect bifurcation theory outlined above has

1
been generalized to problems with symmetry [10]. Let G be a
bifurcation problem with m=n and T a compact Lie group acting

orthogonally on R". Then G is a bifurcation problem with sym-

metry group I' if for all YET we have G(yx,A)=YyG(x,A). One has
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then to analyse the problem in which a perturbation bréaks
symmetry. Stable ways to break symmetry in the pitchfork seem
to be obvious but a general theory of symmetry breaking is
still missing [10],[11].

In a given physical system different types of bifurcations

may occur which interact when A reaéhes a critical value (Sec.
IV). In addition, in many ‘instances only partial information
about the system's behavior is available. It is therefore
pertinent to ask if a highly singular configuration, an "orga-
nizing center " [12], can be found, in which all singularities
are pushed together in such a way that its unfoldings not only
reproduce the experimentally established bifurcations but also
bridge the gap between these in the sense that different sec-
tions through the space of unfolding parameters reveal new
stable bifurcations which have so far not been observed. To
achieve this the following definition of an organizing center
is invoked: Let G and G' be bifurcation problems and let Gu
be a stable unfolding of G. To any set u=(x°,lo,a) such that
Ga(xo,lo)=0 we associate a bifurcation problem defined by

Gu(x,A) = Ga(x°+x,x°+l).

- 20 -
Then G is called an organizing center of G' (i.e., G orga-
nizes G') if the;e is a p such that Gu is contact equivalent
to G'. The geometrical meaning of the organizing center of
a normal form is the following. G is an'organizing center of
G' if the bifurcation diagram of G' appears as a subdiagram
of the universal unfolding of G for some value of the unfold-
ing parameter a. This is to say that the bifurcation diagram
of Ga is qualitatively the same as that of G'. Consequently,
the singularities of G’ are compressed into one highly sin-
gular configuration of G whose perturbation reveals all
possible imperfection effects. Such organizing centers have
been found in thermal chainbranching models [13], in the
Hodgkin-Huxley model of neurons [14] and in optical bistabi-
1ity [15] (cf. Sec. IV). In these cases the critical value Xo
of the organizing center usually lies outside the physical
region. So one might wonder if, for example, in ccsmology
time values before the big bang are relevant for the expansion

of the universe.

4. Applications

The concepts of singularity and bifurcation theory discussed

above have given rise to a wealth of applications in the

.



- 21 =

*x
physical sciences [4]-[7] and provide the topological bones
on which to sew the dynamical flesh of nonlinear evolution
equations [35]-[37]. Without entering the latter field [42] we
conclude this section with a few applications which illus-
trate our general considerations,

(i) Nonlinear Conservation Laws. Consider the quasilinear

wave equation
Ve + 30 =y Wy, =0 (2.3)

for the amplitude y(t,x), t being the time and QER, wi#h
initial condition y(x,0)=f(x). The solution of (2.3) is
given implicitly by F(y):=y-f(x-c(y)t)=0. Suppose that
c' (¢)>0. Then larger amplitudes propagate faster along the
x-axis than lower ones and, if £'<0 on some section of the
x-axis, one sees from F'=0 that the wave starts to break at
a critical time tc' Consequently the shape of the wave is
given by the catastrophe manifold S of Figure 2 with the
identification (x,u,v)+(y,-t,x). The cusp in the (u,v)-plane
3

is the envelope of the characteristics of (2.3). If x€ER”,

the only singularities the wave motion can exhibit are folds,

' - 22 -

cusps and butterfly catastrophes. This model serves as a

basis for Zeldovich's theory of the large scale distribution

of matter in the universe. When one asks for a single-

valued but discontinuous solution y of (2.3), the Rankine- 5
Hugoniot (RH) jump condition s:[w]=[q] must be invoked where
s=% is the speed of the discﬁntinuity and [g] the jump of g
across that line (Maxwell convention). (2.3) also describes t
two phases in equilibrium thermodynamics when the volume V

is kept constant. In this.case y=V, q is the entropy, t the
temperature, x the pressure and the RH condition becomes

the Clausius-Clapeyron formula. In mechanics, the Hamiltonian
H satisfies (2,.3) if we identify (t,x,w,c)=(p,q,H,-3HJ)

where J is the action J(q,H). Then the RH condition reads
(HZ-H1)/(J2-J1)=dp/quv. If we assume that J,-J,=h, the RH
condition is nothing but the Ritz combination principle.
Returning to cosmology, it is likely that the geometric nature
of phase transitions in gauge theories and problems of the
inflationary universe may be captured by singularity and

bifurcation theory. We shall discuss these problems elsewhere

[16].
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(1i) Topological versus Analytical Singularities. Let f(x,12)=0

define a parametrized hypersurface S in R". Then the well-

known formula

ds '
I(X):= SE(£(x,N))¥dx= f T——m————r (2.4)
RO s:f=0 |VE(X/A)

(with a smooth y(x)) establishes a relatioa betweep the topo-
logical singularities of f (Vf=0 where the integrand 1is
largest) and the analytical singularities I(A) will possess
at values of A for which both f and Vf vanish. We shall see
in Sec. III that this is at the origin of some problems
.encountered in the inverse scattering and phonon focusing.
Here we wish to illustrate the significance of Equ. (2.4) in
other fields of physics in virtue of the classification of
imperfect bifurcation problems discussed in Sec. II.3.

(1) Cry;tal spectra: Consider a vibrating system with a
dispersion relation w=w(k). Then, with f in (2.4) replaced
by w(k), Equ. (2.4) represents the distribution function

for the density of modes. In the Morse case this gives rise
to van Hove sinqularities, in the degenerate case one can

classify the spectra by means of the normal forms governing

=241

imperfect bifurcation'theory. The same argument applies to
the density of orbitals in an electron plasma, to the problem
of band structures in semiconductors and to magnon inter-
actions [17]. (2) Dispersive wave phenomena: In a dispersive
medium with a time-harmonic source with frequency w and a
dispersion relation f(w,k)=0, I is the wave function at

point x, y=exp(ikx) and the integral goes over the surface Sw
in k-space defined by f=0. Imperfect bifurcation theory
yields then readily a classification for the bifurcation
modes of waves in a dispersive medium [18], [17].

(iii) Particle Physics. Analysing phase transitions in par-

ticle physics and cosmology, ;nd symmetry breaking igvgauge
theories from the point of view of bifurcation theory are
presently in the center of interest [16]. Phase transitions in
flavor QCD are equivalent to pitchfork bifurcations and their
unfoldings. Breaking SUS; may correspond to unfolding the

double-cusp.



III. TOPOLOGICAL SINGULARITIES AND WAVE MOTION

Wave systems provide a tool for the investigation of unknown
structures. Thus the question arises, what information about
that structure can be inferred from the singularities which
it impresses upon a sensing wavefield. Imposing the prin-
ciple of structural stabilgty -- i.e., qualitative insensi-
tivity to slight perturbations -- on this "inverse scattering
problem”, we show that, because of the overall space-time
view this topological approa;h permits, the complex highi
intensity patterns in the output recordings can be reduced
to a few universal standard forms. These are the only ones
an unknown object or medium can generically impress upon a
sensing wave system. Thig view of the inverse scattering
problem generalizes classical S-matrix theory in the sense
that the observed singularities in scattering amplitudes and
cross-sections are linked with the topological singularities
of the scatterer. Since the latter can be classified, so can
the former, and a new structural approach to the inversion

problem emerges.
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We confine ourselves to the discussion of two problems, viz.
remote sensing of layered media and phonon focusing in con-
densed matter physics. The central idea underlying this geo-
metrical approach is the following. In order that the recon-
struction of surfaces énd subsurface structures from back-
scattered or transmitted waves be physically feasible, i.e.,
repeat;ble, the scattering process underlying remote sensing
has to be structurally stable, i.e., qualitatively insensitive
to slight perturbations of the sensing wave system. Otherwise
today's experiment would not reproduce yesterday's result.
Imposing the principle of structural stability on the inver-
sion process has the following'consequences. It permits us

to classify the geometric singularities that ;n unknown sur-
face or structure generically impresses on a sensing wavefield
iﬁto a few universal topological normal forms described by
catastrophe polynomials. ?hese geometrical singularities pro-
duce the dominant analytic singularities and typical configu-

rations that are observed in recorded signals, travel-time

curves, contour maps, and in the associated diffraction

°
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patterns. As the source-receiver positions or, in the phonon
case, the source frequency, vary, the patterns change their
morphologies according to typical universal bifurcation sets
(caustics). These and the resulting universal power laws
permit a reconstruction of profiles in a genuine zero-offset
survey. The topological singularity and bifurcat;on concepts
deriving from structural stability provide a unifying frame-
work for all scattering techniques currently in use. The
resulting conceptually simple processing methodology yields
directly the desired end result of interpretatioh and-comes
much closer to the interpreter's intuitive qualitative approach
than wave-equation based methods. Moreover, the topological
singularities provide an explanation for the similarity and
universality of the high-intensity patterns encountered in
surface sensing [19], [20], [21], seismology [22], ocean
acoustics [23], electromagnetic sensing [24], [25], ultra-

sound tomography, phonon spectroscopy [26], and so forth.
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III.1. INVERSE SCATTERING

1. Wavefield sinqularities

Suppose a point source at X, in space emits a spherical wave
pulse that propagates through a layered medium made up of
partially reflecting surfaces. T;e scattered wave w(zo,t)

that is received back at the source -- the echo -- exhibits

as a function of time t a number of strong peaks which vary
with the source position X, In this echogram (a seismogram
in a geological survey) caustic structures are discernible,
e.g., tﬁose shown in Figure 8 where the intensity |w|2 of the
echo is plotted as a function of the (vertical) time or Aepth,
and of the (horizontal) source'position. Known as bright spots
in seismology, these caustic events and the diffraction pat-
terns around them are the singularities which the medium
impresses on the sensing wavefield. They are at the root of
the interpreter's intuitive geometric, 1.ef, qualitative,
approach to remote sensing. Indeed, an interpreter readily

points out that the layered medium which produces the echogram

of Fig. 8 1is the one shown in Fig. 9.
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In discussing the effects of caustics we confine ourselves _ Therefore, the reversals in the propagation direction of the
to a single reflecting surface. Since source and receiver specularly reflecting points, as seen from X, are recorded
are at the same place, only the geometrical optics specular _ as cusps in the echo profile (Fig. 10b). Indeed, while
refléction points of the surface whose distance vectors to there is but one echo when X, is at A, there are threg when
the source are normal to the surface contribute to the echo. x, is at B. Fig. 10b is reveale& in Fig. 8.
Then, as an observer atlzo.moves along a line on an observat%on In three—aimensional space the observation surface I inter-
surface I above the surface, the reflecting point moves in sects the evolute sheet generically in smooth curves L,
the same direction for a surface with low curvature. But when ‘ called fold (AZ) lines, and in isolated cusp (A3) points ¢
the line is above the lowest curvature center of a concave (Fig. 11). As the height of ¢ varies, the fold lines evolve

; 4
part of the surface S, the reflecting point suddenly moves : 2 into evolute sheets while the cusp points evolve into lines
in the opposite direction. This reversal in direction occurs ' called ribs. If the rib is curved upwards (or downwards) and
when x_ on I crosses the surface's evolute E (the set of : L is nearly tangent to a poing on the rib, then the observation
loci of the surface's curvature centers). The evolute is the surface intersects the evolute in two beak-to-beak cusp singu-
envelope of the surface normals where neighboring rays, normal ' larities (or in a 1lip). This is shown in Fig. 12 for the
to S, touch and focusing occurs (Fig. 10 a). When the source- winged evolute sheets E of a saddle-surface S. Let
receiver -- the shotpoint for short -- crosses E, then the j R = R(EO'E) = |§°-§| be the distance from x  to a point X on
number of rays going through x  suddenly changes by two and so on S and T = 2R/c the two-way travel-time (with speed c).
does the number of specularly reflecting points. This implies A The signals that are received back at the source after reflec-

that the number of arrival peaks in the echo also changes by two. tions by the specular points x = 55(50) on S have travel-times

.
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T_=T(

s X

& (50)) or distances RS = R(§°,55(§O)). These form

X,
a multi-sheeted 3-dimensional hypersurface in 4-dimensional
(T8,§O)~space. For example, in case of a plane observation
Aufface L, with X, = (xo,yo), the saddle-surface S of Fig. 11
gives rise to the travel-time surface on top of Fig. 12 with
two-dimensional sections shown below.

A rib is smooth except for isolated points where either of

the following singularities can occur: (i) the rib itself has
a cusp point, called a swallowtail point (A4) because near it
the evolute has the shape shown in Fig. 4. (11) a rib may
touch a fold or two other ribs; in this case two evolute
sheets have a contact in a common curvature center and are
either hyperbolic or elliptic umbilics (D: or D;) shown in
Figs. 5 and 6 , respectively, and the surface has an
umbilic point. Since the observed singularities in echo
recordings derive from the focal surfaces which constitute
evolutes, and since still more complex caustic morphologies

will arise if a surface possesses edges [27), [28], or if

gource and receiver are different [19], the question arises

how to classify the singularities a surface impresses on a
sensing wavefield or ray family. To understand this, we need

catastrophe theory [19] (Sec. II).

2. Structural stability of remote sensing

Let the point x on the smooth surface S be parametrized by
surface coordinates X = x(x,y). The distance vector Bs = XX
from a specular reflection point X = 53(50) to the source is

normal to S, R, = R, (x, )n(X;) where R, = |x -x_| (cf., Fig. 13

for the basic scattering geometry). The distance R has an

extremum R, at x_: t+V R = O for vectors t tangent to S, or

.

VR =0" i (3.1)

with R = R(go,g(x,y)) and V = (3/3x,3/3y). By definition, a
solution x = 55(50) of (3.1) is a stationary point, or a
"topological singularity” of R. The type of singularity R
possesses at X depends on the Hessian detérminant

Ryx ny
R,
Xy Yy

H(R) = (3.2)

evaluated at Xg- If H#0, Xg is said to be nondegenerate. In this

o e S

L ST
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case, R can be represented by a stable Morse quadratic form.

If H=0, X, =X is called a degenerate specular point. In

SC

that case X, = X, lies in a curvature center X, on the sur-
face's evolute E. The equation for the evolute follows by
eliminating x and y from (3.1) and HQO, lgaving one equation
for X, = X, alone.

At this point we require that the scattering process under-
lying remote sensing be structurally stable, i.e., that the
observed images preserve their quality under slight pertur-
bations of the system caused, e.qg., by.slight deformations
of the surface or by small variations of the source. Then
Thom's theorems [ 3] assert that -- in an appropriate curvi-
linear surface coordinate system denoted again by (x,y) and
in a curvilinear source coordinate system X X, = (u,v,w) =-
the structurally stable distance function R can take on but

five "catastrophe” polynomial normal forms near a degenerate

specular point x & inside a smooth part of S, viz.,

R = R, + P(x,y1x;) + Dy>/2 (3.3)

= - . = - '
where R, = Iic Esc' and D Kq~K, Where Ky are the surface's

principal curvatures in Xoor If D#0, P is one of the cuspoid

polynomials A2 (fold): P = x3+ux, A3(cusp): P = x4+ux2+vx;

A, (swallowtail): P = x5+ux3+vx2+wx. If D=0,VP = xyztx3+wy2+ux+vx
represents the hyperbolic (D:) ;esp. elliptic (D:) umbilic

polynomials. The bifurcation éet of R is just the evolute ﬁ

which, therefo;e, is classified inté ?he five types menti;ned

above. They are shown in Figs. 3 (A;), 4 (A,), 5 (D:) and %
6 (D:). As a consequence, there are but five structurally
stable and generic travel-time singularities observable in
an echogram. All others are concatenations of these. If
source and receiver are at different positions, there are 14
genuine singularities [19], but the above five describe com-
pletely the observed high intensity focal surfaces. Their
structural stability can be attributed to the fact that
because of the high intensity accumulatedhin the caustics
these are insensitive to small perturbations. . :

For A3, Equ. (3.1) yields with (3.3) the equation 4x3+2ux +v = 0,

i.e., the "overhanging cliff" of Fig. 2 where v = “Xge

*
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X = x and u=h are identified with the source position, surface
point and height h of the obser;ation line. Projecting the
cliff's edges onto the (xo,h)—plane gives a cusp which is
precisely the evolute E of Fig. 10. A geometric interpretation

of Fig. 2 1in another context is given in Sec. II.

3. Travel-times, contour geometry and surface reconstruction

Structural stability implies that, as the source position
varies, the travel-times change their morphologies according
to universal bifurcation sets. The travel-times recorded in
the echo as a function of the source position are obtained

by eliminating x and y from the equations (3.1) and (3.3).

One example is shown in Fig. 12. A bifurcation sequence of
travel-times coming from an umbilical surface point of elliptic
type, when X ¥=u varies on a line above the curvature center,
is shown in %ig. 14, where Pg = Rg-R,. The spherical wave-
fronts of constant radius r=R, centered on X cut the sur-
face in a series of contours C(r,go) (¢f.,/Fig. "13). An

observer moving with X sees the Fresnel-zone contour topography
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changing according‘to universal bifurcation sets. A typical
topographic change is show£ in Fig. 15 for an umbilical sur-
face point of hyperbolic type. The contours follow by setting
R-R°=r=const in (3.3).

As the source-receiver X, varies ;bove the surface, each
point of S eventually becomes specular. In virtue of the

specularity condition (3.1), the surface normal at Xg is

given by n(x_(x,)) = VEORS(EO)' Then we obtain from x -x =R_n

the equation for the surface

x =x, - Rs(go)VEORs(gof (3.4)

Since |n|=1, only two components of VEQRS are needed and it
suffices therefore to vary X, on a surface I, say, on a plane.
Inferring Rs from the arrivals or peaks tﬁe echo Yy possesses
at times t=T8=2RS/c, the surface profile can be reconstructed
directly from (3.4). For an input signal F(t) with basic

’ -

source pulse frequency Wo (cf., Sec. 4), the echogram near a

degenerate singularity X e has the form

Yt x ) =wl (AF (t-T_ ) +BF (t-T_ )} (3.5)

where a={1/6, 1/4, 3/10, 1/3} for the singularities {Ay A3
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measuring the rate of change of the received power permits
one to identify and to classify the structural details of the
reflecting surface near travel-time reversals.

4. Diffraction Patterns

In classifying travel-times and surface contours the language
of ray theory has been used so far. The wave-type diffraction
patterns around the caustics follow from Kirchhoff's diffraction
formula [19] for the backscattered wave Y in the shortane'
limiP,
2izidi )

vit,x)) = (1/8n c)L)er(r,go)F(t—Zr/c) (3.6)
with the incident spherical wave F(t-R/c)/4nR. Here, the sur-
face structure function G -- the wavefront sweep velocity or

scattering matrix -- is given by the integral

G(r,x ) = deR'3(g-g)5(r-R) =3 [dsV|g|(n-R)/|VR] (3.7)
s foll

where 6 is Dirac's function and the contour C' is the projec-
tion of C (Fig.13) onto the (x,y)-plane. From (3.7) the main
contributions toG (and y) are seen to come from those values
of r for which the integrand is infinite, i.e., from the geo-
metrical optics specular reflection points given by VR=0,
Equ. (3.1). The Fourier transform of G is

G(k,x,) = [dS(3R™'/an)exp(ikr) (3.8)
S 5
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where k=uw/c. Hence, 6(m,5o)=-ima(2m/c,§°)§(m)/8n2c. The
generic diffraction patterns associated with the travel-time
singularities follow by substituting (3.3) into (3.8). Asymp-
totic evaluation of (3.8) gives high-intensity diffraétion
patterns of Airy, Pearcey and higher-order type [19,29]). The
wo—dependence in (3.5) follows from (3.8) and (3.3) by scaling..
A typical diffraction pattern around an elliptic umbilic cau-
stic is shown in Fig. 16 (cf., also Fig. 8).
If the surface possesses edges and faults [27], the evolutes
are amput;ted by the sufface's shadow boundaries (Fig. 17).
The effécts produced by'such discontinuities can be classified
by six "constraint" catastrophe polynomials [30],[31]. For
example, a fault (Fig.17) is determined by P=x3+vx2+ux (x>0)
and the diffraction pattern following from (3.8) is of. combined
Fresnel-Airy type: The intensity near the travel-time reversal
decreases much faster than the one produced by a slope. Figs. 18
(a) and (b) show the travel-time curves when X, varies on a
line above and below the point B in Fig. 17, respectively.

This effect is also present in Fig. 9.
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III.2. PHONON FOCUSING

The above classification of singularities in wavefields and

ray families scattered back by a surface can be generalized

-to deal with inhomogeneous and anisotropic media [32] - [34].

Incorporating these topological concepts into S-matrix tech-
niques of inversion offers new and practicable tools for Q}i
the sensing processes presently in use in a wide variety of
physical and technical systems.

Perhaps the most beautiful and indeed unpredictable application
of the above ideas arose when it was discovered that the topo-
iogical principles just described also govern the remarkable
phenomenon of focusing of ballistic phonons in condensed matter
physics. The central idea is to create "ballistic heat pulses®
in anisotropic crystals at low temperature so that a collision-
less motion is made possible which dominates diffusive (thermal
phonon) précesses. Suppose a burst of heat energy is created

at a point of a crystal surface with a laser or eiectron beam.
The heat produces phonons radiating in all directions. For a

single crystal cooled to low temperatures (2K) the phonons

—a
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travel in it ballistically, i.e., without scattering, at the
speed of sound over distances of the order of centimeters.

Since the elastic properties in a crystal are anisotropic,

the constant-frequency (or energy) surface in vae-vector
(k-)space is in general not spherical and displays pronounced
anisotropy depending on the material. Consequently, the group
velocity v which defines the direction of the energy flux of
the elastic (or phonon) wave, is also very anisotropic. The
group velocity is normal to t?e constant-frequency surface S,
and thus k and v are not coOlinear. Thus, considering an inco-
herent phonon source with isotropic angular distribution of
k-vectors, the phonon flux is channeled into intense beams
along preferred crystal directions. This channeling of high-
frequency phonons is called phonon focusing because ti@e-inte-
grated signals are detected as two-dimensional high intensity
images exhibiting caustic‘effects. Singularity theory classifies
the singular events which typically (generically) occur if the
frequency which determines the frequency surface varies in a
nonlinear dispersion relation. The changes in that surface

induce the topological changes in the caustics. Again, the
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reason for such a classification being possible is that the
image produced by ballistic phonons must be insensitive to
small perturbations in the system, i.e., structurally stable.
Suppose a monochromatic point source of frequency w generates
phonons with wave-vectors k that propagate ballistically in a
crystal whose anisotropy is described by a dispersion relation
w=R (k). Then only those k contribute to the phonon field u(g,h)
at a point r in space which make up the constant-frequency sur-
face S=Sw:w=ﬂ(5) = const, i.e.,

u(r,w) « [dké(u-(k))elXE = IdST%- (3.9)
for a given polarization mode. Here, r=rf with unit vector
g,¢=g-5 and the second integral is taken over S. Suppose first
that the phonon's group velocity v=VR(k), with 9=v/|v|=n the
unit normal to S, has no zeros. Then the phonon flux is in the
directions £=%(k). The corresponding wave-vectors k on S are
(for large r) those for which ¢ is stationary, E'Vk¢=° for vec-
tors t tangent to S. Phonon focusing directions, i.e., angular
caustics, come from the inflection points of S along a principal

curvature line where the Gaussian curvature vanishes. These are

the stationary points where the Hessian determinant of ¢ vanishes.

Since the caustics are structurally stable, i.e., insensitive
to small perturbations, ¢ is equivalent to a Thom catastrophe
polynomial ¢=P. This implies that the caustics can be classi-‘
fied by the topological singularities of the Gauséian map G of
the frequency surface S on the muitiply covered sphere S2 of
the group velocity directions 2(5) on which the caustic_images
are observed (Fig.19).

The fact that the structurally stable caustics are the images
on 52 of all points on S with zero Gaussian curvature has the
following consequences. By Whitney's theorem, the only generic
singularities on S2 are folds and'cusps. They are produced,
respectively, by the line L on S with zero Gaussian curvature
and its points of contact with the principal curvature line P
that has zero curvature on L. When the fold lines, which sepa-
rate dark from bright regions on Sz, are crossed, the number of
phonon k-vectors changes by two while three k-vectors coalesce
at a cusp point. If the dispersion relatio; is linear, w=c(£)k
(nearest neighbor interaction), the surfaces S are similar for

different w, so that folds and cusps are the only possible

caustics. If, however, the dispersion relation m=Q(5)’is non-




- 43 -

linear (long range forces), a variation of w may change the
topological type of S and that of the caustics when u crosses
a critical value w.- These sudden transitions are called cri-
tical events. Parametrizing G by w-w, (the following events can
occur,

(1) Swallowta}l: Here, L has a second-order.contact Qith P
(Fig. 20b) which splits into three intersections (Fig.20a) an&
one ‘intersection (Fig.20c) of L with P forlw<mc and m>wc, giving
rise to the caustics of Fig. 21.

(ii) Hyperbolic and elliptic umbilics: S possesses an umbilic
péint which is a point k with equal principal curvatures where
the surface is locally spherical. In the case of a hyperbolic
umbilic the curvature vanishes for w=w and the locally flat S
produces the middle caustic in Fig.22b. For mzwc, a tangential
contact of L and P produces the cusps in the two other caustics

in Fig.22b. An elliptic umbilic point appears when a circular L

shrinks to a point for W, from below and expands into another

circle for w>w_ . The resulting caustic is shown in Fig.22a.The
three cusps in Fig. 22a shrink to a point for W .
(1ii) There are but two possible degeneracies in a line L for

w=w., viz., one that produces a caustic beak-to-beak event

T

(Fig. 23a)and one giving rise to a caustic lip event (Fig.23b).
These singularities exhaust all stable possibilities when no
symmetries are involved. On a crystal's reflection planes and
rotation axes new types of caustics are generated. They have
been described in [34] A C6-symmetric singular event is shown
in Fig.24. The Airy, Pearcey etc. diffraction patterns around
the caustics follow by substituting P into (3.9) and evaluating
the integral asymptotically [19]. By scaling one finds that on

B

the caustic |u|sr " for large r with the singularity indices
B=(5/6, 3}4, 7/10, 2/3) for the fold, cusp, swallowtail and
umbilic‘events and B=3/4 for lips and beak-to-beak events.

If the dispersion relation w=Q(k) has stationary (Morse) points,
where the group velocity v vanishes, a new phenomenon springs
up. Suppose that in Fig. 25(w1,51) is a minimum and (wZ’EZ) a
saddle. Then the constant-frequency surface develops a second
disconnected sheet when w goes through Wyqs which gives rise to
an overall flux enhancement. If w goes through Wy, the two
surfaces coalesce in one of the two ways shown in Fig. 26. The

caustic originating from the vertex of the cones is a great

circle on Sz, but since v is zero at the point k,, the inten-
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‘8ity is zero and, therefore, this circle must appear as a dark
ring ("anticaustic®). On either side of this dark line one

expects two diffuse bright small circles whose positions cor-

respond to the semiangles of the distorted cones near the vertex.

We expect that with the recent development of tuneab;e phonon
sources the caustic singularities occuring at the specific cri-
tical frequencies W will bécome accessible to detailed experi-
mental investigation. The same singularity-theoretical methods
can be applied to photon focusing in anisotropic optics, magnon
focusing and so forth. Similar focusing phenomena are well-known
in magnetohydrodynamics. Finally it may be observed that the
same caustics also dominate visual recognition processes in

biophysics as they do in all optics.

IV. BIFURCATION GEOMETRY AND STRUCTURE FORMATION

This section addresses the topological problems posed by thé
formation of similar patterns and modes of behavior in physical
systems whose order parameters or state ;ariables undergo spon-
taneous changes if slowlg varying and competing driving forces
enter conflicting regimes by crossing a bifurcation set. The
general physical situation has been discussed in paragraph téo

of the Introduction. Our objective is to describe and classify

" the transitions between possible configurations of solutions

of nonlinear evolution equations by using nbrmaﬁ forms of struc-
turally stable families of maps in the framework of imperfect
bifurcation theory (Sec. II).

Most of the nonlinear evol;tion equations.of physics (e.g. the
Bloch and Navier-Stokes equations) are not amenable to a quanti-
tative analysis and few, if any, are completely known, so that
it is often not clear for which particular effects one ought to

7

look. Since these equations derive from general principles

" (conservation laws etc.), one wishes to find out which types

of interacting time-periodic and steady-state solutions can

occur under the hypothesis that they are structurally stable,
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i.e., that they preserwe their quality under slight perturba-
tions. A system of general evolution equations depending on a
control parameter A and a set of imperfection parameters o can
be reduced (e.g., by the Lyapunov-Schmidt method) to a small
number of algebraic equations for the amplitudes of the station-
ary solutions and the amplitudes of the time-periodic solutions.
These are the bifurcation equations of the system. Solving them
would give a complete picture of the spatio-temporal structures
and modes of behavior of the system. Unfortunately, they can be
solved just as little as the original evolution equations them-
selves. However, one can perform a change of coordinates in

such a way that, in the new variables, the bifurcation equatidns
reduce to simple polynomial normal forms. The latter can be
classified and play the role of "organizing centers" in which
all the degenerate singularities responsible for instabilities
of the system are compressed. Perturbing them reveals all poﬁ-
sible bifurcations which are stable against imperfections and

80 can occur generically in evolution problems of whatever
genesis. Two types of bifurcation of solutions of general evo-

lution equations are fundamental: The bifurcation of a steady
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state with amplitude xiand the Hopf bifurcation of a time-
periodic solution with amplitude y from a stationary one.
Interactions between them lead to secondary bifurcations of.
periodic solutions and to tertiary bifurcations of double-
periodic motions lying on tori and eventually to chaotic
motions. This interaction occurs if a control parameter A cros-
ses some critical values. Imagine, e.g., that x and y satisfy
two algebraic normal form equations a(x,yz,k)=0 and b(x,yz,l)=0.
The solution of the first is a two-dimensional multisheeted
surface y=¢(x,12) in (x,y,A)-space, that of the second equation
is another surface y=¢(x,A). The iines along which both sur-
faces intersect givé the simultaneous solutions of both equa-
tions, i.e., the bifurcation set of the evolution equation
from which the behavior of the system can be inferred as A
varies. The intersection of the two surfaces may either be
transversal so that any slight deformation of the sutfac?s
c;hses no new types of intersections: Struétural stability of
the bifurcation diagram is ensured. However, if the two sur-
faces intersect with tangential contact (organizing centers),

or just touch, then a slight deformation of them produces new
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intersections and so gives rise to new bifurcation possibili-
ties which then, however, are stable aginst any further pertur-
bations. These deformations can be thought to be induced by
variations of the imperfection parameters in the original evo-
lution equations. Since the forms of the perturbed polynomi;ls
a and b and the surfaces they determine can be classified into
a finite set, the problem of interacting spatial and temporal
patterns has thus been reduced conceptually to a concatenation
of possible basic bifurcation diagrams. In other words, by
requiring structural stability ;f a.system, its generic modes
of behavior can be inferred from universal (i.e., topologically
invariant) geometrical structures. All that has to be done is
to determine the rules according to which the diagrams can be
connected (different from but akin in spirit to Feynman rules).
This program is presently being executed, but it is fair to
admit that we are only at the beginning of an emerging "geome-
trization of physics". Still, already at the present stage,

the predictive power of this sort of reasoning is quite sur-

prising.

In this section the above arguments are applied to classify
interacting Hopf and steady-state bifurcations which can
generically occur in autonomous nonlinear evolution equations
with a distihguished external control parameter and a set of
system-immanent imperfection variables. A variety of new pheno-
mena, such as gaps in Hopf branches, periodic motions nog stgbly
connected to steady states, and the formation of islands are
discovered which one can expect to find in evolution equations
on pure geometric grounds. The results are.discussed ip detail
in [35] and are based on those of a highly mathematical paper
[12] in which symmetry-covariant imperfect bifurcation equatigns
for systems with two order parameters have been classified and
organizing centers have been determined. The physical signifi-
cance of these findings is that the sudden transitions between
spatial and temporal patterns, which occur when parameters vary,
are independent of the underlying particular mechanisms.‘The
theory has been applied in [35] to the Brussela?or model of
chemical reactions and it was shown that this model describes

a variety of new phenomena that have so far not been antici-

pated. Perhaps the most fascinating new physical result sprang
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up in [36], where the above ideas were applied to the problem

of self-pulsing in optically bistable systems, which carry

great potential for technical applications. Here, an organizing

center for all possible bifurcations, giving rise to new
phenomena of self-pulsing from the low transmission branch
and 1slana formation, was discovered. The new phenomena, pre-
dicted on topological grounds alone, still await experimental

confirmation.

IV.1. INTERACTING HOPF AND STEADY-STATE BIFURCATIONS

1. Bifurcation Equations

Suppose that the dynamics of a physical system are governed

by the system of evolution equations
v
T F(v,}) (4.1)

1 is

where v 1s an element of an appropriate Banach space, AER
a real bifurcation parameter, and F is a smooth nonlinear

operator defined on a neighborhood of the origin and satis-

fying F(0,0)=0. We assume that the linearized operator

A= DVF(O,O) (f.2)
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has a siﬁple zero eigenvalue and, in addition, a simple pair
of imaginary eigenvalues tiwo (m°>0). The remaining spectrum
of A is assumed to be to the left of the 1maginary axis. The
problem we are concerned with is the following. Equation (4.1)
has the stationary solution v=0 fo; A=0. When the externally
controllable bifurcation parameter A is varied away from zero,
then, because of the nonlinearity of F, two basic types of
solutions bifurcate from the trivial one, viz., (i) steady-
state solutions associated with the zero eigenvalue (e.qg.,
limit point bifurcations and hysteresis), and (ii) time-
periodic or Hopf solutions associated with the eigenvalues
timo of A. The nonlinéarity ?f F causes these two §olutions
to interact and, since they tend to the trivial solution v=0
for XA+0, F has a degenerate bifurcation at (0,0). The degene-
racy can be removed by subjecting F to small perturbations,

representable, e.g., by additional imperfection parameters o

in F itself, F>F . This is achieved by stably unfolding the
algebraic bifurcation equations to which (4.1) will be
reduced. Then, as the unfolding parameters are varied, zero

and imaginary eigenvalues occur for different values of the

oo Y &

v

e
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distinguished parameteg A and,vwith the degeneracy soAremoved{
new bifurcation phenomena are springing up which are struc-
turally stable.

Since the linearization of (4.1) at (0,0) has (2ﬂ/éo)—periodic
solutions, we seek for periodic solutions of (4.1) near (0,0)
with period 2n/w ;here w is close to Wy SeLting s=ut,
u(s)=v(s/w) so that u has period 27 in s, we rewrite (4.1)

.
as the nonlinear operator equation

N(u,,1) = 192 4 Lu - R(u,2) =0  (4.3)

where T=0-w ., Laﬂ)gg-A and R(u,A)=F(u,A)-Au. In #he space E
of (2m)-periodic vector-valued functibns u=u(s) the linear
operator L has a three-dimensional nullspace spanned by the
eigenfunctions ¢=(¢1,¢2,¢3). In order to reduce the bifurcation

problem (4.3) to an algebraic one by the Lyapunov-Schmidt

method one decomposes

u=u(s,z) = 23 Ziby +w = z¢ + w(s) (‘.4)
i=1

with amplitudes z=(z1,zz,z3) and <w,¢i>=0. Hence, z¢=Pu and

w=Qu with the projections Pu = 23 <u,¢I>¢i, Q=I-P. Then,
i=1

Ll T

solving (4.3) is equivalent to solving the two equations
PN=0 and QN=0.

By standard iﬁplicit function arguments QN=0 has a smooth
unique solution w(z,A,t) , w=o(zz) which, when substituted

into PN=0, yields the bifurcation equations
z <3 ) + R(z¢+w,1),6"> =0 (4.5)
g, = Tgg (zé+w zo+w, T PN .

Equs. (4.5) express the fact that, for (4.3) to be solvable,

R must be orthogonal to the eigenfunctions of L (Fredholm
alternative). Since (4.1) is invariant under time-translation,
it suffices to choose Z2,=0. Therefore, solving g,=0 for
r=r(x,k,y2) and substituting into the remaining two equations,
(4.5) reduces to the degenerate algebraic system of bifur-

cation equations i

a(x, Lyz)
G(x,A\,y) := | 2 =0 (4.6)
yb(x,A,y

with

a(0,0,0) = b(0,0,0) = O,

g (4.7)
ax(0,0,0) =0
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The solutions of (4.6) are in one-to-one correspondence with

those of (4.3). Therefore, the algebraic system (4.6)

describes the Z(2)-equivariant interaction between the

periodic (Hopf) solutions of Equ. (4.1) with amplitude y20

and the steady-state solutions with amplitude x when the

bifurcation parameter A varies. We classify and analyse

these interaction phenomena in the next subsection.

2. Classification

.

The mﬁltivalued solutions of (4.6) are the bifurcation dia-
grams in (x,),y)-space. We classify them together with their
stable perturbations by means of imperfect bifurcation theory
(Sec. II), referring to [ 9], [35] for technical details.
Equ. (4.6) possesses two coupled types of solutions, viz.,
pure steady-state solutions with amplitude x determined by
{a(x,1,0)=0,y=0}, and periodic solutions with y#0 obtained

by the simultaneous solution of the equations
2 2
a(x,2,y%) =0,  b(x,A,y) =o0. (4.8)

The periodic solutions may branch from the steady-state at
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a secondary Hopf bifurcation point and may further undergo
tertiary bifurcations to tori [35], [37]. Our approach to
this problem is based on two central principles of topo-
logically invariant bifurcation theory. The first is to
change coordinates so that the‘qualitative topology of the
bifurcation diagram G=O is preserved, the special role of

the externally controllable bifurcation parameter A is
respected and G takes a simple polynomial form from which

the solutions may easily be determined. This problem is
solved by using the notion of (Z(2)-equivariant) contact
equivalence (Sec. II and [ 9]) of singularity theory which
shows that, under certain conaitions on the.Taylor expansion
of G (resp., F) at the origin,‘G is equivalent to one of

the polynomial normal forms o; corank two given in Table 1 of [12]
and [35]., The second principle is to determine and to classify
fll the possible, stable and inequivalent, i.e., qualita-
tively different, bifurcation diagrams tﬁat may arise when a

given G(x,A,y) is subjected to small perturbations which

correspond to imperfections in F. This is achieved by using
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the basic concept of singularity theory [9 ], [35], viz.,

the existence of universal unfoldings which capture all
families of perturbations of G which, ué to contact eqﬁi-
valence, preserve the distinguished role of A -- distinct
from the parameters determining perturbations. In bifurcation
theory the unfolding problem goes under the name of imperfect
bifurcation because of thé sensitivity of a bifurcation dia-
gram representing a physical phenomenon against internal
imperfections. These may be interpreted as additional para-
meters in F(v,1) whose role is taken over by the unfolding
parameters of a universal unfolding of G. Their number, the
contact codimension of G, is a measure for the degree of
complexity of the degeneracy. The complete degeneracy of
(4.1), due to the zero ahd imaginary eigenvalues. of DVF(O,O),
implies that the solutions of the bifurcation problem are

not structurally stable, i.e., they do not preserve their
quality under slight perturbations of G. Embedding G into a
stable family of unfoldings allows one to characterize this

instability. Conversely, G can be considered as an organizing
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center, i.e., as an idealized system in which all singu-
larities any unfolding of G can possess are pushed together.
Unfolding this highly singular configuration will then
display the effects of all imperfect}ons.

3. Bifurcation geometry

We present here a few generic perturbed bifurcation diagfams
describing interacting Hopf (H) and steady-state problems (S),
referring to [35] for a comprehensive study. Of major interest
for applications are special points in th; perturbed bifur;
cation diagrams, viz., limit points and secondary bifurcation
points (SB) which are here all Hopf bifurcation points, and
tertiary bifurcations (T) from the Hopf branch to a torus.

The stability properties are indicated by assigning to each

branch of a diagram its stability symbol ((--) stable, etc.),

i.e., the signs of the real parts of the eigenvalues of -the

s
7

Jacobian DG.
In Fig. 27 we show the simplest secondary bifurcation (SB)

of a Hopf branch (H) from a steady state in the (x,))-plane

e
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assoclated with the normal form (1)21:a=x2+52y2+x=0, b=y (x-v)=0.
Figure 28 shows two Hopf branches bifurcating from a steady- -
state with bistability. In Figure 29 a terFiary bifurcation
point T appears where a transition to a double-periodic
solution occurs. There are many more diagrams exhibiting

a variety of new phenomena such as gaps in Hopf branches,
hysteresis between Hopf aﬁd steady-state branches, periodic
solutions coming "out of nothing,® i.e., not connected to
steady states, and so forth. Their significance in a variety

of physical systems, e.g., in Prigogine's Brusselator and in
the Benard problem of hydrodynamics are presently in ghe center

of interest [35]. As an example we discuss briefly the

problem of optical bistability.

IV.2. OPTICAL BISTABILITY AND SELF-PULSING

Optically bistable systems are currently attracting
increasing interest, not only because of their potential
applications but also as laboratories for the study of

nonlinear synergetic phenomena which exhibit multistability,
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self-pulsing, interacting spatio-temporal patterns and

chaotic behavior [38]. Since the Maxwell-Bloch equations

which govern optical bistability cannot be solved analyti-
cally except in limiting cases, a geometrical approach

along the lines sketched above.appears necessary. That this

is also feasible has recently been demonstrated [39]. BQ

a reinterpretation of known numerical facts, one can fidd a
degenerate self-pulsing situation on the high-transmission
branch, which in virtue of structural stability leads to

new bifurcation diagrams. Among them are first and second.&rder
transitions to the self-pulsing mode and the formation of

an isola. Evidence is given for the existence of a cod 4
organizing center (cf. II) which organizes both the bistable
switching (which itself is or;anized by a hysteresis point)

and the self-pulsing whose degengracy is an H(7) degenerate [9]
Fopf-bifurcatidn. Unfolding this organizing center shows,

apart from all known interaction phenome;a, several new ones
whose experimental or numerical detection is t; be expected.

In optical bistability experiments a coherent laser beam

is injected into an optical resonator (Fabry-Perot interferometer)
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filled with a homogeneously broadened two-level atomic system
between two partially transmitting mirrors within a feedback
loop. The refraction index of the medium depends on the
incident intensity I which plays the role of an externally
controllable parameter A, I=A. The transmitted intensity x
becomes a nonlinear function of I described by the S-shaped
hysteresis loop of Fig. 30. Jumps from the high to the low
transmission branch and vice versa describe the phenomenon
of optical bistability. It has been shown that for pure
absorption a sectibn of the upper branch of the hysteresis
curve can become unstable (the (+ -)-part in Fig. 30). Then
the system exhibits a limit cycle, i.e., an undamped time-
periodic sequence of pulses branches from a cw-transmission.
This is the Hopf bifurc#tion producing self-pulsing in
optically bistable systems. We represent the amplitude of
this time-periodic solution by y. Furthermore, there exists

a region for the cavity mistuning and atomic detuning and
values for the cooperation parameter such that the hysteresis

curve can possess a point with a vertical tangent (a hysteresis

\ .A' ) - 62 -

point). Cohsequently there are two degeneracies, viz., a
hysteresis point in the stationary transmission branch and
a degenerate Hopf bifurcation point on the upper branch.

The simplest normal form G(x,A,y) in which both degeneracies

coalesce is the form (5)32, [39], viz., it

3

+ y2 -2 + Bx +.a
G = 2 2 (4.9)
Y (xT+1T) + y(8+yx)

with unfolding parameters o,8,y,8 which depend on the system
parameters. G is an organizing center for optical bistability
bifurcations. The bifurcation diagrams of G=0 have been
discussed in [15]. Some of these are shown in Figure 30 in

which the loops emerging from.the hysteresis curve are pro-

.jections onto the (x,A)-plane of the branches in (x,A,y)-

space. Among the new phenomena which one expects to find in
optical bistability experiments are the following: Bifurcation

to self-pulsing from the high transmission branch (Fig.'30.2);

’

two hysteresis loops between self-pulsing and the cw-regime

(Fig. 30.6), i.e., periodic motions not stably connected to

a stationary solution; torus bifurcation points (marked by T or
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dots on the loops of Fig. 30) which may lead to chaotic
behavior. Perhaps the most surprising phenomenon to be
encountered is the appearance of a stable island representing
a self-confined light-pulsing that is trapped between fixed
incident intensities (Fig. 30.7).

The phenomena just described still réquire experimental
confirmation. Their theoretical existence has been proven
on pure geometric grounds under the hypothesis that optical
bistability is a structurally stable phengmenon. Let us
briefly comment on chaotic behavior of optically bistable
systems. Computer simulations indicate a Feigenbaum sequence
to chaos [41] through period-doubling in optically bistable
systems [38]. In addition a Ruelle-Takens scenario [40] may

take place when the 2-torus T turns into a 3-torus by

another Hopf bifurcation, thus leading to a strange attractor.

In the present case another non-Feigenbaum route to chaos
might spring up: It is known that a 2-torus is not structu-
rally stable under perturbations breaking the SO(2) symmetry

[42] but leads to transverse homoclinic orbits in whose

neighborhood chaotic behavior takes place. Such unstable tori
{

also arise when two simultaneous Hopf bifurcations emerge

from a point on the steady-state curve and interact. It

would be interesting to discover such non-Feigenbaum routes

to chaos in optically bistable systems.
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V. CONCLUSIONS

We may summarize our results as follows. Both at the micro-
scopic and macroscopic levels, the topological singularities
and universal bifurcation processes deriving from the
principle of structural stability of physical systems play
together the decisive role in structure formation and struc-
ture recognition. These concepts are at the origin of all
the geometric analogies discovered in the critical behavior
of systems of different genesis which synergetics aims at

describing. I have tried to illustrate the breadth of the

.impact of Thom's work by giving a brief selection from the

many applications of bifurcation theory. Recent developments
address problems in solidification and melting systems,

fluid dynamics, chemical reactions, symplectic geometry and
Lagraggian singularities and so forth. The next step ought

to consis£ of incorporating singularity theory into particle
physics and cosmology. In this context M. Schénbérg's work

on quantum mechanics and geometry appears to be of great sig-
nificance. This problem raises very difficult but fascinating

questions that promise a great challenge for future research.
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