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1. Introductien
The spinor plays a fundamental role in the quantum
theory (especially in itsrelativistic form) but its over-all

structure and physical significance is not clear.

Various attempts have indeed been made to intérpret
the meaning of the spinor. Of these, the most elementary is
the use ofstereographicprojectioni. From tﬁis, one may
come to the interpretation through a vector blus a
flagz, and also through a set of triadsg. Next, there
is a different but closely related approach, in terms of the

chords of circlesu

What appears, at least at first sight, to be quite
another idea is to start with a Clifford algebra, and to
interpret the coefficientsas antisymmetric tensors
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Still another way of dealing with such questions, but along

the same general lines is Sch8nberg's connection of spinors

with phase space6



In this paper, we shall start by combining the
Clifford algebra with Schdnberg's phase space inter-
pretation, showing the inter-relationship of these two,
and developing the whole theory in a systematic way.

In doing this, we will use the algebraic approach in

such a way as to bring out the connection between

quantum theory and classical theory7. This will enable
us directly to comprehend the meaning of Dirac's equation

in the classical limit.

We begin by showing how the Dirac algebra can be
expressed as the direct product of two dual Grassmann
algebras, which can in turn be written as products of
fermionic creation and anihilation operators
Each antisymmetric tensor of a given rank is then the
coefficient of a term in the algebra corresponding to
the excitation of a number of vector! fermions"equal
in number to the rank of the tensor . From this, a
connection between the fermionic operators and boundary

operators, similar to that of Kahlerg, will be derived.

Finally, starting with the Dirac equation, containing
electromagnetic potentials, we obtain a Liouville
equation, in which spin is seen to correspond to a
rotary transformation on aset of constants of the
motion, thus showing how the notion of spin goes
beyond ordinary classical concepts as expressed 1n

terms of the Liouville equation.



2. Brief Summary of Connection Between Non-Relativistic
Quantum Algebra and an Algebra on Phase Space

In a previous paper7 we have developed in some
detail the connection of the non-relativistic quantum
algebra with an algebra on phase space. Briefly, we
start by proposing that the density matrix, p(z%z) ,
Or more generally a certain non-Hermitian extension of
it, called the characteristic matpiac s Elel oref) e
taken as a basic concept while the state yector‘is seen
as an abstraction from this. We then make the Wigner-

Moyal transformation7
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where X 5 R o

and we obtain the generalized Liouville equation

QL
o

(3)

Q
|
+
5
2|
1]
(1)

where L is the generalised Liouville operator, which

reduces exactly to the well known classical form

_oH @gr ¢H aF (W)

for the special case of the harmonic oscillator and
approximately for the general hamiltonian, in the

classical limit (of high temperatures).

When E(®',%) is e hermitian operator, F is real, but

b



not in general non-negative. It is this which has

prevented a direct interpretation of F as a probability
density. Instead, we have proposed, for the general
(non-Hermitian) &(xz',2), F = U + iV be regarded as

a pair of related constants of the motion Which may

be negative as well as positive).

An essential step in our work has been to treat
E¢o*,2) in two ways. Fivet of all, it is a matrix
operator, in a vector space, indexed by x. To simplify
the discussion, let us approximate the range, x as
discrete and finite, so that it has n "states". Then
there will be n2 independent elements in g (z',%).
What we now do is to regard these as components of a
higher vector space, having n2 elements. (As n
approaches infinity, this becomes effectively the
phase space). We call these vectors, ga. We then
introduce new matrix operators, Oq',(x-having n*
elements, which evidently are the basis of a matrix
algebra on the phase space. When we make the Wigner-
Moyal transformation we are regarding g(x',x) as a
vector in this higher dimensional space, on which the
Liouville equation acts as an operator. The inter-
change between operator and vector interpretation for
E(x',x), is essential for expressing clearly the
relationship between classical and quantum laws of

motion.

In our paper, we have developed this interpretation

in some detail, proposing a new kind of non-negative



probability function and also a way ©Of extending

the theory, to cover certain new domains. All of this
may ultimately be significant in the relativistic theory,
but for the purposes of the present paper, what is
important will be just the connection between gquantum
mechanics and Liouville's equation, whose solutions

are to be considered as constants of the motion, with
the aid of the double interpretation of £(z',x) as an
operator in the configuration space and as a vector in

the phase space.

3. Connection Between Clifford Algebras and Grassmann
Algebras

Before going in detail into the discussion of
relativistic phase space, it is necessary to éxpress
in a simple and systematic way the connection between

Clifford algebras and Grassmann algebras.

As indicated in Sec. 2, we begin with the density
matrix, which must however now be enriched with spinor

indices, so that we write
o= p..(z'M, 2 | (5)

where i and j are the usual set of four Dirac indices.

We then extend the above to the non-Hermitian matrix

£ = gij(xlul x}'l) (6)

and we note that &, like p satisfies the two Dirac

equations
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€ can be expressed as a Clifford algebra, essentially

the same as (1) except that the coefficients are, in

general complex. That is to say we are treating &
as-a Dirvae WMatrix.4§ But, as ‘suggested in Sec. 2,

we are also going to regard € as a vector V in a

higher dimensional vector space.

We now note that whenwﬁloperates on & from the
left, this will commute withy" operating on & from
the right. To distinguish these two operators when
they act on the higher vector space, we shall
designate them respectively as

?u and ?u 5 with

[ ?U,‘*{‘\-)] = 0 (8)

Of course, we also have the usual anticommution rules

{?u’_?n\)} :{?u)?\)} = 2911'\)

What we now aim to do is to arrive at Sch8nberg's
representation of the Clifford algebra in terms of
fermionic creation and anihilation operators, (but from
an opposite point of departure). The first step is

to obtain a set of eight operators, similar to the

?U and ?U (which however all anticommute in spite of
eqn. (8) which defines two commuting sets of four

operators). To obtain this, we consider
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We now go on to define the operators
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These satisfy the anticommutation relationships
+ +
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We have thus arrived at Sch¥nberg's set of creation

and anihilation operators, which we have, however,
derived from the two supplementary Clifford algebras,
generated respectively fromiﬂl&$jl(which are however to
be distinguished from the original Clifford algebra

given by egn. (1). Clearly the a H



define§Grassmann algebra with 16 elements, as do

+
the a i

s so that together, they cover the same 256
elements that are covered by the product of the

two supplementary Clifford algebras.

The infinitesimal element of the Lorentz group is

given by

T
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From the above, we readily verify that .a H and a’

do indeed transform as vectors.

v

M and a .

When we use the "fermionic" operators .a
it is convenient to define an "empty" state vector,

Ve, satisfying
a¥ v_ =0 for all y (12)
to

Let us now go back/the representations (1) in terms of

the original Clifford algebra, and consider the ypit scalar

S = (1)ij

We have

M S U

+
atle = (_Y__'—_Y_)S (,Yl—ll_ y51 5 YU) =0

where we have written (?u)i = yHand ?51 = v°

1.?5 = %2 . and 1.?“ = y“ . This means that the scalar S
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is equivalent to V., the "empty" state of the "fermionic"

representation.

We have aso

a+uS : ,Yll1+ .Ysl .YS ,YU
2

and similarly, we can easily show that products, such
ag » a kgt g withpu#v , also reduce to the
corresponding products, yuyY1 :yuyv . This means that
we can write for the general state vector

Eﬁ +a uA +atMa

+U +V +a +u +V +ao +3
qPVf VGI ﬁpva@ﬁ =
G122

This expresses the connection between the Clifford algebra

and Sch¥nberg's use of a Grassmann algebra.

In the Clifford algebra, the operator iy5 =z-yly2y3y%
produces what has been called a duality transformation

That is

Sl u oV LoV A L.V A o
Y ¢-Ao+2&uy +A[u\)]Y Y +AEUV>\]Y Y Y+A[1_J\)>\a:[Y Yoyt (14)

where the A are the duals, as usually defined . For example,
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Noting that y® is operating from the right, we obtain,

in the "fermionic" representation



¥
=
"

U T o

- + 4 +

ol S (a "+a") 2% (a a”)

= : +u : o
when o =y, we obtain a s and whena # U, we obtain -a
So, the operator Yu transforms a¥ into at M . and

: + 3

(as can easily be shown), a " into a" . The

product,j§5, thus interchanges all creation and
anihilation operators. So the duality operation
transforms the "empty" state vector, Ve into the
MHul 1" state Vf, and as can easily - be verified, it

changes an arbitrary state vector, V, into V.

Let us now take as an example the Dirac
equation operating from the left on the original

Clifford algebra
(L0 = (FHyy - o

Pels s

Writing once again

we obtain

1:0%
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where V is the state vector corresponding to¢. Consider

: o
a typical term of V, such as (a® A Ve
+U +o oA : 2 2
a a —& Ve corresponds to the exterior derivative
. gt |
of Ay-. This 1s the boundary operator s (which evidently

Then

satisfies (a™H —éi)(a+lwaj) = 0, because of antisymmetry
ox 2@ o : A
of 'all products of &™) Sinilaply ali S gt iye. o gho 0 g

ks da
.which corresponds to the co-boundary operator.

If D represents the duality operation (given by i?s ) we

: ; + - .
can write a"™ =D a " p 1, and obtain

l

T 1 (15)

s —é—)V = " —3—-+D a®
3 9zt dx
and this is just the expression for the Dirac equation

that Kéhler8 has derived, in another way.

The Dirac operator can thus be
regarded from the point of view of algebraic topology
as the sum of a boundary operator -and a co-boundary
operator, while the terms of the Grassmann algebra
correépond to a set of complexes. We have however been
able to derivg?iesult fairly directly, because the
relationship of antisymmetric tensors of different

rank is more simply expressed in terms of the Grassmann

algebra rather than in terms of the Clifford algebra.

The result relates to a preliminary connection

between quantum theory and co-homology theory that we
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have made earlierio. But now, we can develop this
coﬁnection further by relating the homology operations
to-the Clifford and Grassman algebras which are - basic
to relativistic quantum theory. We expect to-go into

this question in later papers.

4. The Dirac Equation and Relativistic Phase Space
We retum to the two Dirac equations (7) which are

now written in terms of the vector space, V,

Vel o gl UV o) (16)
NPT T
H H
As in egn (2), we intrqduce~Xw~=-“§L—;i§—
el RN along with a relativistic generalization

of the Wigner-Moyal transformation
v (Xu, PH) = o [ V(x’u,xu)e—lpun d*n (17)

We multiply the second of the equations (16) by YsYs

and we get

From (9) we write the above as

0
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By adding and subtracting the above equations we obtain
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Under the Wigner-Moyal transformation .(18-a) becomes
+ 9 : L=
- d P T =10
2 axk =
By applying the above operators twice we are led to
g"Vp 3 ¥ 22 (19)

axH

This is the (classical) Liouville equation for a free

particle.

We have thus seen that certain combinations of the
Dirac operators appearing in eqn (18-'a, when applied
twice imply the Liouville equation. If however
we had added (18-a) and (18-b), and then applied the
resulting operator twice we would have obtained the
Klein-Gordon equation which, ¢f course, contains
further quantum-mechanical implications, beyond those
of the classical Liouville equation. Some of these
implications have been discussed in reference (7),
but for the purposes of this paper, such guestions can

be set aside.

As pointed out in Sec. (2) the coefficients of the

V , as obtained by the Wigner-Moyal transformation on (13),
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are now to be interpreted as constants of the motion.

The Dirac equation applied to the original Clifford
antisymmetric tensors that are

algebra thus implies a whole set of/related constants

of the motion, beyond the single pair (real and imaginary

parts of a complex functim) which appears in the non-

relativistic theory. The appearance of such. a set

implies some new physical concepts, which we shall discuss,

at least in pavrt, further on in this seection.

Let us now consider the effect of electromagnetic

potentials, Aﬁlgy). The Dirac equations (16) become

= V
P e —ANS A Y T D
dx M S
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Expanding
v v na A (X))
Afr)ZA X) +=—£
w i Zaxa
and
3A Y
v v o
Aw')2a (x) - 2L &)
and following the same substitutions that led to egn. (19),

we obtain for the generalized Liouville operator,

5 5
uv e °Ay
2 -9 B = —
gq g (Pt 2 u)BXu gy <k 2 M)C o aP
(21)
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The first term in the above represents the modified
contribution to the Liouville equation coming from the
motion of the trajectory through space. The second

represents the contribution of the electromagnetic force.



15

The third corresponds to the effects of "spin" of the Dirac
electrons That is {o say, v changes, not only-because
of changes of positionémﬁfmomentum in a trajectory, but
also because the electrdmagnetic fields, Fuv , generate
what is equivalent to a rotation (Lorentz transformation
among the components of the V.. These latter thus
cease to be constants of the motion. Spin is therefore a
new kind of movement, which involves a change of
originally
what were/constants of the motion. This means that
the solutions of Liouville's equation now undergo a
transformation. that does not arise from the "particle"
motions, so that they have begun to take on an independent
physical meaning. Spin igyggt a property of trajectories

but of the field, V (X P). (which is constituted of

antisymmetric tensors)

Finally, there is the fourth term in (21). This

represents a kind of "force" on the trajectories due

d

apc !
But it also involves fields, V through the operators

to the electromagnetic field (because it involves

ailatVe We may regard it as describing the effect
of spin on the trajectories. (this term will be unimportant
if the field functions, V, spread out over a large region

in phase space).

5. Conclusion

We have developed an interpretation of Dirac's
equation in terms of an original Clifford algebra (given
in eqn (1)) which sytematically incorporates all

the antisymmetric tensors, the Grassmamnalgebra and its
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dual, and a pair of supplementary (right and left) Clifford
algebras. From there, we have derived a Liouville equation.
By thus putting Dirac's equation into a "language" broad
enough to relate it to classical mechanics, we can see in
some detail how spin goes beyond ordinary classical concepts.
These latter attribute all the electronie ‘motieon to a
particle trajéctory, and imply that the solutions of

Liouville's equation are a mere "shadow" of the trajectories,

which are regarded as descriptions of the basic reality. We see

that on the contrary,the solutions of Liouville's equation are
fields having certain independence of motion, and that the
trajectories depend on these fields in an irreducible way.
So the two together are needed for a complete acgount,-and

this is beyond the classical way of thinking.

A related result has been obtained non-relativistic-
ally ih our previous paperu, where we show that the concept
of a self-determined trajectory has a limited applicability,
and that these limits are determined by the solutions of
Liouville's equations, which indeed also héve a meaning

going beyond that of being mere déscriptions of trajectories.
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