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QUANTUM MECHANICS OF RELATIVISTIC

SPINLESS PARTICLES
BY
JOHN RICHARD FANCHI

A guantum mechanical theory of rela-

- tivistic spinless particles, based uponv
the Born interpretation of the wavefgnctiog,
is constructed on LZ(?,ct). A generalized
Schr8dinger equation is derived having a
ﬂermitian Hamiltonian and the concept of
superposition of mass states is introduced.
Charge éonjugation is discussed and a non-
trivial framewofk for charged and neutral
particles is brovided. The Klein paradox
is fesdlyed and an experiment is suggested.

A direct test of the theory is présented.
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PREFACE

There are a number of ways to motivate the research
embodied in this paper. My principal motivation for
undertaking this work was the desire to answer the question:
can free will and determlnlsm coexist? The answer to this
i questlon has important consequences in fields other than
physics, e.g. theology and economics.

- Physics of the early twentieth century provided the

answér "yes" to the above question in the following sense.
Non-relativistic Quantum mechanics, via the uncertéihty
principle aﬁd the Born interpretation, implied that the
evolufion of individual particles could not be predeter-
mined on the microscopic level. Yet, on the average; the
motion of an ensemble of particles could be accurately
- predicted. In other words, a 'free will'--a lack of
predestihation-—exists in Nature on the microscopic level
for the individual particle Whilé, concurrently, determinism
exists in Nature on the macroscopic level for an éggregate
of particles. This was a major break from the coﬁcept of
Newtonian determiﬁism.

More recently, the difficulties associated with
constructing a consistent theory of relativistic phenom-
ena which employs a,probaﬁilistic basis have cast doubts

on the answer "yes" to the question posed heretofore. The

;
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purpose of this research is to construct a quantum mechan-

ical description of relativistic spinless particles that
consistently utilizes pfobabilistic concepts. By achieving
this goal one‘femoﬁes fhe aoﬁbts alluded to earlier and,
consequently, gives additional credibiiity to the answer

"yes", i.e. free will and determinism can coexist in

. Nature.

Before proceeding‘further I would first like to
ackﬁowledge: my'wife, Katherine, for her support and
patience; my adviser, R. Eugene Collins, for his bhysical
‘inéight, guidance, and‘professionalism; and, of course,
my parents, John A. and Shirley, without whom this work

’

would not have been possible.
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I. INTRODUCTION
The primary purpose of this research is to
construct a consistent single-particle theory of
relativistic spinless particles. The reasons such

a theory does not already exist will be examined in

this chabter. The new theory will then be presented’

in Chapter II. Chapters III - VI will examine the .

new theory and show how it can be used to resolve
the difficulties associated.with conventional

theories.

A. History
In 1926 Schrbdiﬁger1 introduced the concepts
of wave mechanics to the scientific community.
His work laid the foundation for non—rélativistic
quantum mechanics (NRQM). Let us record here
three importént relations of NRQM: |

1) Schrbdinger's equation

h 3% ~hT o i : '
N Ee nL e Vs e
2) the probability density
Ps = V?”?g % O0; (1.2)

and

3) the normalization condition

So, dix=1 . » (1.3)
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2

Shortly after Schrbdlnger s first paper on 7
NRQM there appeared the following equatlon2 4‘
| b}
[75; o2t miar (1.4)

where my is the rest mass of the particle*,
Initially Eq. (1.4), now known as the Klein-Gordon
(KG) equation, was thought to be the wave equation
for relativistic .particles. ' This belief was short-
lived however.

.From Eq. (1.4) and its complex conjugate one

can derive'the continuity equation

O x#

where

[’”"‘—{ Vi ] -2Rvre. e

A'eontlnulty equation, having the form of Eq. {115)
but with j* defined differently, could elso be
derived from Schr¥dinger's egquation. In an effort
to miﬁic the successful NRQM, it was assumed that
jo/e should be interpreted as the relativistic
probability density. This assumption gave rise to
problems of interpretation because jo could have
negative values. Consequently the KG equation was
considered inadequate as a wave equation for rele

ativistic particles and an alternative was sought.

-7 See Appendix A for details regarding notation
and the metric.
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3
Dirac's5 relativistic theory was published a
couple of years after the KG equation first ap-
peared. The capability of the Dirac equation to
accurately describe the electron, including the

magnetic moment of the electron, quickly gained it

acceptance as the proper description of relativistic

particles. The KG equation was resurrected only
after Pauli and'We_isskoph6 reinterpreted Eq. (1.4)
'as the field equatioﬁ for spinless particles in'the
formalism of second quantization.- They did not,
however, resolve the problem of a 'negative proba-
bility density'. |

Relativistic sbinless particles (RSP) did'

receive some attention in later years in, for

Vexample, such notable papers as those of Wigner7

and Bhabhas, but the failings of the theories pur-

porting to describe RSP were not eliminated.
Considerable interest in the theoretical

: deécription-of RSP was generated when Lattes, et

a1.9, discovered the pion in 1947. Eleven years

later Feshbach and Villarslo

published a review
article which discussed the properties of RSP as
they were_uhde;stood by the scientific community 
prior to 1958.

Today there exist essentially two pointé of

view regarding the theoretical description. of RSP

by a single-particle theory. The most prominent
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I
is the two-component formalism whose foundation
was first laid by Feshbach and Villarslo. More
recent discussions are given byABjorken ahd Drellll,

and Baymlz. The other formalism, as described by

13, assumes that the only’ physically re-

Schweber
alizeable energies of a free particle are those
which are positi?e. Thesé two theories will be'
referred to below as "conventional theories”.

Tﬁoggh by no means exhaustive, this sketch
does provide a backdrop for a more detailed dis-

cussion of the difficulties associated with the

conventional theories.

B, Difficulties with Conventional Theorieé
The first difficulty to be described is that
which was also the first recognized historicaily,
namély négative probability densities. If thé

solution to the KG equation has a time,depéndencé

given by et then jo/c has -the form
Oa o
o oty ‘ht«)—eﬂ X
%? s v wHy _ (1.7)

The quantity jo/c is hegative whenever fhu—eAO is
negative. Thus, by identifying jo/c as a prqbability
density, one encounters the difficulty of negative
probability densities. The concept of a negative
‘probability density was so unconventional when it

was first introduced that the entire theory was

considered inadequate. Ohly when Pauli and Weisskoph
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_ 5
resurreéted the KG equation did people begin to
reassess the meaning of jo/c. The two-component
formalism of Feshbach and Villars is one such
attempt.

In this theory one transforms the second-order
KG equation into two first-order equations. One
then attempts to separate the positive and negdtive
energy components of the solution to the.KG equation
and then attach a positive and negative norm
respectively. This is only possible, however, for
weak, slowly varying potentials; otherwise the
Hamiltonian, obtained by applying the Foldy-

14

Wouthuysen transformation™ ", will not converge or

else willfnot,ﬁé Hermitian. Thus the two-component
; [ : ‘

formalish, fgf which a positi?e—definite probability

. s /
density can be defined, is only an approximate

I
!

formalism. .

Alternétively, one can simply accept negative
probabilityjdensities and disfegard mathematical
custom. Iﬂ this case, that of accépting jo/c.as

the probability density, one would define, say, the

expectation value of a radius r as

A e e N s _ S akieD
§ iy o£x

which is what conventional theories do. An
example will be given later which shows that Eq. (1.8)

does not generally agree, in the non-relativistic
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limit, with the correéponding expectation value found -

using NRQM. This lack of agreemeht casts doubt on
the valldlty of identifying j /c as a probablllty
den81ty and is a second difficulty which needs
resolution. ' ¢

Another approach to the problem of 1nterpret1ng
3 /b is to assert that one must multiply j /c by
the charge, e, of a particle in order to get a.
: meaningful quantity. This quantity, ejo/c, is
then interpreted as the charge density. Thus the
’,contiﬁuity equation, Eq. (1.5), upon multiplication
by e represents the conservation of charge. This
is Qerpaihly a non-trivial approach to the problem
for charged particles. However for neutral particles,
such as the neutral pion, multiplying by the charge
is nofhing more than multiplying by zero and Egq. (1.5)
is converted into the tfivial identity O = 0. The
fact that Eq. (1.55 is valid for neutral particles,
Twe jo/c is conserved for neutral particles,
suggests that the interpretation of jo/b is not
" Yet complete. Findiﬂg an interpretation of jo/c
.which is non-trividl for both charged and neutral
particles is a new, a third, difficulty which must
be confronted. This point‘has recently'been ac-
‘knowledged by MarxlS,
| The three difficulties mentioned heretofore

are based on two facts: the existence of positive

B
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7
and negative energy solution; and the existence
of a continuity equation for j#* . These facts
" are responsible for two more difficulties.

The existence of negative energy solufions
was a diffiqult concept to accept when it was
first recognized. When Dirac found that his
formalism also required the existence of negative
energy solutioﬁs, his explanation was the, now

well known, hole theory16

; The.hole theory, Based
on the Pauli exclusion principle, was, aﬁd is,
quite suitable for fermions. However for bosons,
‘such as -the RSP considered'hére, the hole theory
is useless. Elevén years later Stlickelberg sug-

: geséed the interpretation that positive energy
solutions represent particle propagation forward
in time and negative energy solutions represent
particle propagation backward in time. This
interpretation, adopted by Feynman18 in his
development of propagator theory, seems to have
resolved the difficulty of understanding the
negative energy solutions; howéver, this inter-
pretation is, at present, only an ad hoc éddition
to convgnﬁional theories. Furthermore, this
“interpretation preserves the single-particle
character of conventional theories, an achievement

Dirac's hole theory cannot claim. It will be an

asset for any single-particle theory of RSP if
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that theory includes, as an integral part, the
Stlickelberg-Feynman interpretation.

It hés already been pointed out that jo/c
has not yet.been adequately interpreted, but now
it will Be shown that even the interpretation of
jo/c as a chafge density is not without problems.
This difficulty, first introduced by Klein19 and

now known as the Klein paradox, arises when the prob-

lem of scattering from a step potential is considered.

' Using the interpretation of ejo/é as the charge
density Klein and, more recently, Winter20 have
shown that the reflection coefficient for an in-
cident RSP will acfually excéed unity. Thié
-prediction has no foundation in experimental fact
and comprises a fourth difficulty of conventional
theories. .

A fifth difficulty of conventional theories
is that a correspondence to relativistic classical
mechanics cannot be made from the KG equation
because the rélativistic,classical equation of
motion does not have a quantum analog.

The sixth, and final,‘ difficulty to be dis- |
cussed here is that unstable particles cannot bq
.consistently described by conventional theories.
This is so because conventional theories assﬁme
that probability ié conserved in space only,

whereas unstable particles are describeable by

R PET T v g - 5 e S S e
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marginal probability densities in time22'23f
It may be that one sh;uld not expect single-
particle theories to describe pafticle'decey;
however, this point of: view has not been proved.
It must be recognized that any theory which
purports to cdmpletely describe RSP is deficient
if that theory carnot describe particle decay
for the simple fact that RSP do decay. Thus a
single-particle theory which can describe particle
decay is mere complete than those which cannot.

The situation has been'summedeup concisely ‘
by Schweberle "A wholly consistent relativistic
one-parfiele theory can be put forth only for.free

partioles".

C. A Course of Action
'fhe purpose of this thesis is to describe a
consistent quantum mechanical theory of RSP which‘
is free of the above difficulties. The approach
to be employed parallels that developed by Coll:’mszu"é5
for NRQM and places probabilistic concepts at the
foundation of guantum mechanics.

-

\ ¥'.§ Let us recall that the use of probabilistic

ry Lconcepts in NRQM has been successful. Historfcally
the early relativistic quantum mechanical theories
were, to a large extent, constructed in a manner

: .analogous to their non-relativistic counterparts.
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10
Two particularly important.non—relativistic
relations were Born's statistical interpretation
of Y. ., Eq. (1.2), and the spatial normalizétion
of the probability density, Eq. (1.3). It has been
“the custom in spinless-pafticle.«relativistic,
quantum theories to retain Eq. (1.3) and discard
Eq. (1.2). Some of the difficulties mentioned
apove'are a consequence of this procedure.
The approach taken here is to retain Eq. (1.2),
so that a positive definite probability density,P ,
is assurea, but to assume that P is a distribution
in space and time. Thus it is necessary to abandon
- Eq. (1.3) gﬁd e§tend the normalization condition
to iﬁcluqé/timggas well. The implementation and
interpre%atiqﬁlof this program is the subject of

. i
the rest of this paper.
/
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II. FOUR-SPACE FORMULATION

k4

In order to treat space and time in an

essentially symmetric way, the probabilify densityfa

should represent a joint distribution in the space

and time coordinates, thoughup may be conditioned

by some invariant parameters. In particular it 1is:

postulated that‘p is conditioned by an invariant
parameter 7 . Then the conditional probability
density is expressed as r(?{Ctlt), and the cor-

responding normalization condition is

‘Lfozc:th)a*x:':; L= dxodeldxtand . (201)

The quantity D is the domain of definition on
which p may be non-zero, and f(i,ctl‘t)dxodBX is
the probability that the particle is at the world-
point (X,ct) when the parameter has the value T.
Since a pafticle can occupy any world-point in
space-time, it follows that D must extend over

all of space and time.

The fégt that the norm is a constant in Eq. (2.1)

suggests that the density f(i,ctlz) obeys a continuity

equation in space-time. Preservation of the norm

in four-space can be assured by requiring that f(i,ctbt)

11
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vanishes as |x*|+m» and obeys the equation

9 p(Rctlx) 9 [otx 7] _ T ee2)
altf’xc x -i_a)x“ [r(x,cilt)V’“] 10,

where V‘*'is not yet defined. In this equation

it is necessary that p and {V“} be single-valued

and differentiable, and it is also assumed that

the metric implied here is that of special relativity
as defined in Appendix A.

Rather than simply assuming Eq. (2.2), one
could have fequired that/odyx be invariant with
respect to a five dimensionai veloéity field
having as components {V4} and Vu=l, where a fifth
. coordinate xu’is defined to be Z.. The techniques
of:a ﬁrocedure suéh'as this are discussed by Kiehn26,
and'it can be shown that Eq. (2.2) is one of two
condi%ions for the invariance of‘pdux with respect
to propagation down the trajectories of ( {v}, V4=1).
The other condition is either dV*/3r is zero for
all values of u or dx is zero. Either approach,
simply assuming Eq. (2.2) is valid or else requiring
f)dux to be invariant with respect to ({V¥} ,Vu=l),
can be used here.

- The physical meaning of the velocity field {v*}

is determined by examining the expectation value of

the space-time position vector of the particle,

(x“).—.fz;'xulo dix . | (2.3)

Py P v
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Differentiating (x*) with respect to % , substituting
Eq. (2.2) for QO/bt , and applying the divergence
theorem with the boundary condition that’J vanishes
as |x4»eo , yields

4Gy = § v dix, ‘ (2.4)
In other words, the expectation value of V# is
the derivative, with respect to = , of the expecta-
tion value of tﬂe four-position vector. This fact,
along with Eq. (2.2), motivates the characteriiation
of the quantities 7 and d<x“/dr as statiétical
analogs of the classical proper-time and proper-
velocity respectively. This'cﬁaracterization will
be further justified below.

how the Hilbert space formalism follows from
this probabilistic description by first observing
that, since p must be non-negative and differen-
tiable, all derivatives of p must vanish whmqf

vanishes, otherwise p would be somewhere negative.

The Born representation is an acceptable mathematical

form for assuring this constraint; thus write
p(X ctlr)= Y*(%,ct =) V(R,ct2) 20 (2.5)

where ¥ and ¥* are Lorentz invariant scalars. The

function P satisfies the requirements of integrability,

continuity, and differentiability if ¥ is both

Lebesque square integrable and differentiable. The

L T P R L e
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quantity Y has.the form i e y
\}/(;?;Qi"'c) = f)(y’l ct},r>/z. el g;(x,ct,.'t) : (2.6)

~ where g is a real scalar function as yet undetermined.

The four-vector {Vf} of Eq. (2.2) can always

be written as ¢
T “_h 3
by A [V W o, (2.7)

where fi/fi is an unspecified constant with units

such that g is dimensionless. One can then define

Ef "z [va_ % 34 (2.8)
: m bxﬂ '
in terms of which Eq. (2.8) becomes ' _
 yM- 524 L e g | (2.9)
WO X :

Here € 1s a constant setting the scale and units

of A“t.” The quantity A** has thé same harmonic and
rotational parts as does V*, although their so-
leﬁoidal parts may differ. Equation (2.9) expresses
V“.iﬁ terms of two quantities which depend on the
phase of ¥. A relationship between A, later to
be identified as the four-vector potential of the
electromagnetic field, and ¢ has been suggested

before27'28.

The consequence of Eq. (2.9) is the
following.

The value of the density'p is unchanged by
the transformation .

V'e ¥ exp [-4 €2 4] - (2.10)
where /A is a real scalar function of'Cf,ct). This

implies that ¥ is specified only to within a gauge

B T L T e e I N e oS %
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transformation of the first kind. The gauge
transformation in Eq. (2.9) corresponds to the

phase change

¢ = ¢- %\E‘-A (2.11)
"and must be accompanied by the galige transformation
of the second kind

l“ AL A
4+
R R .
so that Eq. (2.2) remains invariant with respect

(2.12)

to the above transformations. The final result is
that V#* and f are unchanged by these gauge trans-

formations, and one concludes that both A% and ¥

are spe01fled only to within.a gauge transformatlon.

The functlon g has a topoloclcal significance

which w111 not#oe examined here (see Reference 28

/4

for a brief discussion of the non-relativistic
. =k /

/
analog). /
)

Using Eés. (2.5) and (2.9) in Eq. (2.2) yields
K ? + { -
vty 2 [ (L2 rean)¥]=0. (2.13)

Also from Eq. (2.6) there results

29 _ —7;7 [\/J*_‘{.’ ‘//9""*] (2.14)

O X > Xu
which when substituted into Eq. (2.12), yields

~ih
¥ 23) IY*
Lv e [ (v iy 2 )+en ¥*#]= 0. (2.15)
Now this can be rearranged to read v

Yxp = F*y = (P*F)* S (2.16)
where the quantity F is

Faihd¥ + B2 __,[""“‘” ﬂ"if’] (2.17)

8'7: Zm ax X4 2imé& o x*
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This shows that the product Y*F must be real and
this is assured, for arbitrary ¥ , if F has the
form UY with U a real scalar. The simplest
possible form for U which keeps Eq. (2.17) géuge

2

and Lorentz invariant is e AHAA/Zﬁcz, where & is

now written as
E= -8 /wc¢ (2.18)
“with e and ¢ unspecified constants. The result is
iR 3k {,'a‘[}t%{;—zn"] Ea - g-ﬁ,J‘{’ (2.19)

ER SR

with p*p, a scalar operator.

n

Equation (2.19) is a generalized form of the
KG equation if A# is identified as the four-vector
potential, ¢ as the electric charge of the particle,

fi as a constant with mass units, h as Planck's

constant divided by 2 7 , and ¢ as the speed of light.

EQuation (2.19) has the form of the Schrbdinger
equation except that Eq. (2.19) is defined on a four-
space with a Lorentz metric. Since it does have
the form of the Schrbdingef equation many of the
procedures and results of Schrbtdinger wave mechanics
can be paralleled by the four-space formulétion
(FSF), although care must be exercised in working
with the metric. This fact suggests that much of
the effort needed to develop the FSF should be
concentrated on interpretation because the appro-

priate mathematical techniques are alréady familiar

. T

T
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from NRQM. Such will be the case below. Let it
also bé noted that the appearance of 7« in Eq.'(2.19)
mékes it possible to establish a borrespondence
between the relativistic classical and quantﬁm
theories. | ¢

The meaning of the operator p* in the formalism
here is made clear by observing, in the manner of
.Collinszulfor the non-relativistic case, that if
one inserts the above representations for Y“ aﬁd/o
in terms of ¥ and A% into Eq. (2.4) for d<{x/dx
there resulté _

m %%f? =f‘f”‘*‘[2ﬁ§a-§ﬁ“]¢d"x =P - (2.20)
This Qefines the expectation value of a relati?istic
“proper” momentum. From this definition of the
momentum operator p* follow the familiar cpmmd—

tation rules for canonically conjugate coordinates

and momenta and, from these, follow the corresponding

uncertainty relationships, however the energy-time
. relationship is now on the same mathematical basis

as the momentum-spatial coordinate relationships.

Direct generalization then yields the definition

(Q):fql#g Y dx (2.21)
for the expectation value of any observable
ssdociated with the particle, that is, the expecta-
tion value for any function of the x# or any

derivative of such an expectation value, as p**

- above.
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One can specify some boundary conditions on Y
given some 'a priori' assumptions. Recalling thatp
and V4] have been assumed single-valued and con-
tinuous, two papticularly familiar boundary conditions
‘are obtained by assuming that ¢ ahd {p“} are also
single—valuedAand continuous. Integrating Eq. (2.2)
over a "pillbox" in space-time, letting its length

normal to. the boundary go to zero, and employing

" the divergence theorem as in electrostatic tﬁedryzg
" yields *

‘;‘:E [‘PI* b——ty‘t- - ‘{’1_ b__‘VI_ e gj.l;.n

Pl R amd T @e ™fz (2.22)

='-?¢;[-*a%.__ aw*]_enn
iRl SRS e

.where'a/bn represents the normal derivative, n,

is
the unit normal vector, and all quantities are eval-
uated at the boundaryAbetween regions I and II.
Since ¥ is single-valued
Yr =% | (2. 23)
on the boundary. Equations (2 22) and (2.23), with
the fact that'ZA“} is single-valued, imply the

other boundary condition, namely

IV _  dY¥m . |
- 2 (2.24)

Equations (2.23) and (2.24) state that ¥ and its
normal derivative are continuous at the boundary.
In addition to these conditions, one aiso

observes that ¥ must vanish at any boundary where

ek
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the four-vector potential has an infinite dis-
continuity. If this were not true, then the

probability flux,[f'V“}, would be unbounded across

the boundary.



III. GENERALIZED SCHRBDINGER EQUATION
¢

It is straightforward to prove that p* is
Hermitian and, consequently, that p“p, 1is also
A Hermitian. One can use this fact to write Eq. (2.19) as

- HY o HE AL optp. (3.1)

where H is a Hermitian operator. Equation (3.1)
is essentially a generalized Schrddinger equation.
Since ﬁ is Héfmitian, there exists a set of wavé—
functions Wthh constltutes a basis of eigenvectors

//
for L (x,ct) qbeylng the orthonormality condition .

X‘V*’% oAy = %,? (3.2)
where‘f’q is a solution of the equation '
Pty - = w3530

Thé form of;Eq. (3.3) suggests that q represents
the square of an invariant momentum. Therefore

let us define the magnitude of the expectation
.value of p“p#. as mozcz. This identification will
be - elaborated upon shortly. First observe that
Egs. (3.1) - (3.3) are valid whether potentials are

present or not. Such orthonormality relationships

cannot be consistently defined within conventional

20
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theories .except for the free particle case. |
Furthermore, H is Hermitiaﬁ regardless of the
strength of the potentials. This is a claim
that conventional theories, such as the two-
component theory of Feshbach and Villarslo,
cannot make because the KG equation with poten-
tials is not, in general, diagonalizeable into
separate positive- and negative-energy partsli.

Given Eq. (3.1) a formalism is readily ob-
tained which parallels non-relativistic Schfbdinger
theory. Tables 1 and 2 sketch this parallel ex-
plicitly. Table 1 shows the close similarity
between-the méthematical foundations of the
relativis?ié an%?non—relativistic fgrmalisms.

The equatéons;ég motion in the Heisenberg picture
for the ﬁon—qglativistic and relativistic formalisms
are compared/in Table 2. One can éee that there

now exists 4 classical correspondence for the rel-
ativistic tﬁeory. Thus the results depicted in
Table 2 eliminate the fifth difficulty described

in Section I.B.

In'spité of the mathematical-similarities,
there are concepts which have ﬁo parallel_in the

non-relativistic -formalism. One such concept is

the superposition of mass states.
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The general solution of Eq. (3.1) is a

superposition of the eigenfunctions, i.e.:
"’F(:?',cf,jtv = %_H(}_) \Ui, (k",cf) %{"f—g-%} '(3.4)

with A(q) denoting the expansion coefficients.
Since both positive and negative yalues of q are
admissable, it is possible for the expectation
value of p"‘pA to be negative; the FSF thus in-
cludes both tardyons and tachyonsBo—Bu. For
tardyons,

{PUpu) = mrec® 20 (3.5)
whicﬁ is the special relativistic iight cone con-
straint- in energy-momentum space. Furthermore the
general solution, Eq. (3.4), canlnow be thought of
as a superposition of mass states, a'concept that
is ﬁathematically similar to the non-relativistic
concébt of superposition of energy states. This
interpretation will be discussed in more detail

below for the free particle.
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Table 1: Comparison of the Similarities
Between Non- Relat1v1stlc Quantum Mechanics

and the Four- Space Formulation

L3

NON-RELATIVISTIC 2 RELATIVISTIC

Probability Density

petle) = V(e ¥t )

ARIE) =% ¥, &)

Normalization
ff~d’x=l : S'IOJ":(II
e Continuity Equation .
é&+V.§=0 : + s%,‘j"‘:@
ot : Probability Flux
S=(Av4,- &) = (B - )
T Differential EquationDP R '
Y, - B | & SEXY - L e
: 3-?.H Zm %4. V(}‘{/ where 0T 2% 7 r
P= T p- <R PU= +5 sl-gn“
2 General Sclution 7 o (
. =8 g - 7! TTo)
W)= Re) T (x) EEVE Y(5,et;e)= £ B ()T Fet)le “imn
: 5 : where %
R.(t)= 860 ¥ (% E) Lx Ry (z,) = fz:*(;»ct) V(< by z,)d
‘ Commutatlon RelationsC
[7,?)-4’: ‘ [x e ]=‘£ﬁ3
Ua, J A4 o
ft:‘tﬂ‘]:ﬂt Uncertainty Relations ’
laxl-1a7] 2+ | taxllap.l >34

latl |ael > L#

a. See Sch1ff35 for details regarding NRQM.
b. V is the potentlal energy.
c. A repeated index is not summed here Also

oo = 1 = -84 T ~833 = 833
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Table 2: A Classical Correspondence

NON-RELATIVISTIC? RELATIVISTIC

Heisenberg Equation of Motlon

5 = (3% /s H{H]) - day= (;Q) +-"([Q,H]2./.
where
H'= i";\?.f’ +V iy H = ;_L'm' f-“f.u

‘iF,

f@"ﬂl’ d3x

Class1cal Corre_pondencec

#1320l [z u &30
= : where
[F, W) = FHI-H'F [7,0]= FH-H7
and
/ / . 3% K _
17 2F 3 P =
zm FEE-E] D ety

a.
b.
c.

See SChlff35 for detall% regarding NRQM.
(A) 3 represents the ij matrix element of A.

{1 represents a Pflsson bracket. The classical
s are defined by

p f? o 317§tﬁ
where 4% is the three- (proper) velocity for

the non-relativistic (relativistic) case, and L is

the classical Lagranglan In the corresponding

quantum theory PJ is replaced by .ii 2 yoF; .

e e ——— st

‘J"% 8, d

2H 27
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IV. CHARGED AND NEUTRAL PARTICLES:

THE FREE PARTICLE AND CHARGE CONJUGATION

The free particle is defined by setting the
four-vector {A“} to zero everywhere, or by setting
the charge e to zero. &Equation (2.19) becomes,

with the metric now explicit,

. ' _ 2 az .
Hedte Blvi- & Ev e
with. the general solution : :
V(g et,e) = U{fff)w’ LM(“" «*)r (4.2)

42 (ot - AX)J} °L3(‘01 £

Here ko is expressed as ct. The not;on of the
direction of particle propégation in space énd time
can be thought of as follows.

Uéing.Eq. (4.2) in‘Eq. (2.4) yields

A2 . B e = (v (4.3)
where the invariant interval dt 1is taken to be
positive. The space components of the quantity {V‘}
correspond fo the space components of the phase
velocity, and Vo cofresponds to the temporal
component of the.phase velocity which is interpreted
as folléws; . If, in fact, a particle is progressing
into the future when d{ct) 1is positi&e, and re-

. gressing into the past when d{ct) is negative, then

25
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Eq. (4.3) says that a positive frequency wave
propagates forward in time and a negative frequency
wave propagates backward in time.  This result
parallels the Feynman-Stiickelberg interpretation
Furthermore, in the non-relativistic limit when
m0202>> ﬁ2(§5i) » one has

|&v o> — ¢ (4.4)
as, indeed, it must.

The appearaﬁce of the Feynman—Stﬂckelbefg‘
interpretation as an inherent paft of the FSF is a
significant achievement of the FSF for the reasons
discussed in Section I.B. It is well to repeat.
here,_however, that'the Feynﬁan—Stﬁckelbergvinter—
-pretétion provides an acceptable physical interpre-
tation of positive- and negative-energy solutiohs
within the framework of single-particle theories
such as the FSF. Thus it is not necessary, because
of the existence of negativefenergy soiutions, tb
réinterpret.the KG equation of the generalized
Schrddinger eduation, Eq. (3.1), as fieid equations
which can be understood only within the fraﬁework
of many-body theories. This is an important accoh—
plishment which is readily applicable to the concept
of chargé conjugation. |

The complex conjugate of Eq. (3.3 ) is
) e
% 2. c_gu][ Y K% St (k.5)

17,18
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-

where the—quantity?’é is the solution of the KG

e e e

e p

equation with the charge e replaced by -e. Thus

——

the probability density remains unchanged with

e i e e 9L D

o

respect to charge conjugation. What does change?

If one writes‘{’q as Rélé

pVvH=E 5 .?2___ G (4.6)

thenJPV“ becomes

s v

Replacing e by -e and 1nterchang;ng‘Pq withVa will
change the sign of V4 and () . This says that
Aalcharged particle and its oppositely charged anti-
particle propagate in opposite spatial and temporal

directions for a giveh potential configuration.
Feshbach and Vlllarslo arrived at this interpre—
tation by deflnlng a 'negative probability density',

/-

but the FSF avo; “ds this difficulty. It should also
,/

be noted that %hese remarks are applicable to the

'.'/
free particle/ solutions which, in turn, can be used

!

| ) .
to describe neutral particles. Thus a non-trivial
interpretation of jo/c can be provided for both i
charged and/ neutral particles by the FSF, thegey
avoiding another difficulty of conventional theories.

Returning now to the free particle, let us

-6bserve'that the rest mass of a free tardyon is

given by Eq. (3.5), i.e.

mocz—-<? f) =2 [< > {%- Z)] (&.7)
which is obtained by substituting Eq._(4.2) into
Eq. (2.21) withSX being p*p,. Thus one obtains the

familiar relationship of relativity theory between
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energy, haw, momentum, £k, and the observed rest
mass in terms of espectation values. Equations (4.3)
and (4.7) can be used to generate another signifi-
cant result.
Integrating Eq. (4.3), for arsmall increment, 8% ,

in ?, one finds )

S<r= K (F) 6z and S§¢et>= B2V g (L.8)
where the space and time components have been
separated and explicitly written. Forming thé'

inner product of the four-vector {§(x«)} yields

SO S = (§4etd)t - Sy EXRY (9

=8 [y

Using Eq. (4.7) in Eq. (4.9) gives

(St~ S {RY-SCRD (4.10)
= e2m2 82 _[ Qi _ A% [H2 827
: —r PY T2

where Axs,is the dispersion , <w¥-<w)*, in « and AZE
is similarly defined. One thus obtains, in the limit
of negligible dispersions, the time-like constraint
of special. relativity, simply becaues mozczé"t2 is
positive. One could just as easily obtain the
space-like constraint for tachyons with moz—b—moz.
This analysis is another example of how the prop—A
erties of T are analogous to those of proper time.
It appears here that the as yet unspecified

constant M should be identified as my the ex-

pectation value of the mass. If this is done, then

gty e ddim S L

Rt 964 7 .

TR Y N
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in the non-quantum limit of zero dispersions
Eq. (4.10) reduces to the classical definition
of proper-time interval, but in terms of expecta--
tion values.

Hére. then, one sees that the FSF can be used
to derive results that are familiar from special
relativity. Furthermore, Eq. (4.7) represents the :
fgct fhat the rest mass has been elevated in the
- FSF from simply a specified constant to an obser-
vable. An examination of Eq. (4.2) shows that‘y
is a superposition of states, each of which cor-
responds to axparticular combination of X and a .
Thus one obﬁéinsﬂthe reasonaﬁle result that:

/

measufemepfs oﬁ}%he mass of the relativistic
particle‘gre ﬁét sharply defined, but'have a
dlstrlbutlon,that depends on the probablllstlc
weight of each pure state, namely \A(E “012 As
an example }et us consider the minimum wave packet
represenfation of the free particle. i
The expansion coefficients for the minimum
wave pachet are _
AT, w) = f{[w( 4% )]II Jd (4.11)
where N } are normalization constants and §2,3

represent the 1n1t1al wave components at't= 0 for

the minimum wave packet; these are given by

317# = [ur (4x*) ,_]-g', : (Ll-.12l)

. uf:['("”“ ) _ 2 <4M°>x‘? ; | |

HE ( Axa)*
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Here Ax* 1is the uncertainty in x4, and ¢xgy and <k )

represent the average position and momentum of the
particle at the initial instant‘t; 0. The minimum
wave packet is'then_constructed by substituting

Eg. (4.11) into Eq. (%4.2) and evaluating the integral.

The result is

V.
(Retye) = TT Mo [ ™ ] 2
L{l{‘\&h( )' A=0O Jl‘l‘r} (qu)l +“:ﬁT3A¢AAb—~“ (L," 13)

: _ B
.*’/ﬁ"f"(é;>x“—ﬂ’_ﬁ.z(t”)(2,.) o (dxey - R ) }
2m V. : .
. : H[(bX42 +hT9, . /27 ]
where g 1s given by
Up .
10‘,:[:“3”:-7:2:—333 P (’4—.14)

Before proceeding to the physically interesting
points regarding‘fmin, let us first emphasize two
important mathematical points. First, the repeated
indicies in Egs. (4.12) and (4.13) do not imply
summation. Second, take special note of the ap-
pearance of g,,, in the expression for'the minimum
wave packet. If g, did not appear in Eq. (4.13)
as it does, then‘)umin would not be a solution of
Eq. (2.19) for the free‘particle'case. With these
remarks out of the.way, let us now consider four
physically interesting points.

First, notice that the averages <X) and {ct)
gre (’)‘c‘o> +((§Tco> /M) T and c(to) + (ﬁ(wo)/ﬁc)'t
respectively. These are the expected results.

Second, by taking the absolute square of A(k,w)

one obtains the probability distribution in the

LameN ol mvi s bl Bl i e el ol asipiegid Boatl. L L
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momentum-energy representation. The result is a
Gaussian distribution which indicates that the wave
.packet is formed as a superposition of states that
separafely correspond to a particular mass, i.e. a
particular combination of X and @’. This is also
expected. :

Third, the absolute square of‘f;in gives the
probability distribution--Gaussian--in space and
time. From_this jbint distribution a marginal
probability distribution on:-the time domain is
consfructed representing the probaﬁility of 6b—
serving the particle somewhere in space during
a spepified interval of time, i.é. F(iﬁctlt) is
integrated over all space %o yield Fictlt). Whenever
the marginal probability distribution is zero
the particle cannot be observed anywhere in space,
i.e.-ﬁhe particle effeétively does not exist when F
is zero. .This cépability, not present in conven-
tional theories, is necessary for describing
unstable particles in a single-particle formalsim.

Finally it is of interest to note that the
wave packet solution.?’min, is not Lorentz in-
variant. This is a result of the choice of the
minimum wavé packet as the ihitial value. Since)éiQL
is not Lorentz invafiant, it is clear that the

form of the initial value changes from one Lorentz

I DT I PR S PO SO
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frame to another. The consequence is that?&in-
has.a form that depends on the particular Lorentz
frame. Although ?;in is not a relativistically

proper wave packét, it does illustrate the concept

of superposition of mass states. -
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V. SCATTERING FROM A STEP'POTENTIAL

It.is important to observe {hat the solutions
of the usual KG equation have not been changed by
going to a four-space formalism although the use

of those.solutibns has changed. 1In addition, the

definition of spatial probability flux as pVi(j=1,2,3)

remains unchanged. If one recalls that séattering
calculations require only the continuity of spatial
probability flux, and do not fequire the use of

normalized_solutiohs, then it is evident that the

.usual KG theory can be used to compute scattering

cross sections. To do so one must assume that the
solution of Eq. (3.15 is stationary with respect
to T and represents a single mass state. In a
rigorous treatment, however,_these assﬁmptions

do not, in general, hold. It is then necessary

to represent an incident free particle by a
space-time wave packet which is a superposition

of mass states, just as in NRQM an incident free
particle is represented by a wave packet which is
a superpdsitién of energy states. The formal

development of such a theory has promise as a

fertile area for future research. For the pur-

poses of this paper, hoWever, it will be sufficient

33
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to consider onl& the simple example of a RSP
scattering from a sﬁep potential:

As pointed out in Section I.B, an especially
peculiar féature of cdnventional theories is the
prediction that a RSP incident on’ a step potential
of sufficient strength will be reflected by the
barrier with a reflection coefficient that exceeds
unity. This result is a direct consequence of
identifying ejo/c as‘the charge density. Even
though totai charge is conserved, the prediction
that more particles will be reflected than were
incident is a surprising consequence which has no
expgrimental justification. Thié is a serious flaw
of.cohventional theories that, as will be shown,

’ doeé not arise in the FSF.

' The four-vector potential for this problem is

G = o X&L0
T Mo , (5.1)
A (R,ct)= 0.

The time component, Ao(x), is sketched in Figure 1.

eR°v)

N

ex

v

|
|
|
l

ar e o x

Figure 1: The Step Potential
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It will be assumed throughout this calculation
that a spinless tardyon is incident from the left
.of Figure‘1 with energy o, and momentum kl’ where ¢y,
and k1 are both real and positive. The boundary
conditions to bé satisfied are that the wavefunction
and its first derivative with respect to x must
be continuous across the'boundary at x = 0.

The solutions of the equations

FRETR, 0 Y __ 42 ot 2 :
(Zm A'h') 5—;:- = %Iq’r- % CJ: fysin 32;;_]‘{/1 (5.2)
and |
. - » 1‘
(x4 H) %;J—'f = ;zrqzlr‘ #‘ﬁ;('vzr* ;E—-a-ag ”e?d'] Yo (5-3)

are the wavefunctions for Regions I and II re-
spectively.
fIn Region I the solution ?& is
N T A G
where a; and b1 are the coefficients of the inci-
dent and reflected plane wave solutions respectively.
These identifications are established in Appendix B.
The eigenvalue relation in Région I is
$Izmzc"=tz ‘;.i';-ﬁf} %20 (5.5)
where the inequality is valid for incident fardyons
and the real quantity m is defined by Eq. (5.5).
Since vy and k1 are assumed known, so also 1is the
observed'rest'mass, m, of the particle.

A description of the situation in Region II

is a little more involved than that given above for
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Region I. The solution of B -45<3) is
LPH_: [—qz e-,.-(q‘x +bze‘.4'xJe‘.“’&te-‘.z“’b4‘“*_ (5.6)
To assure that the wavefunction and its first x-
derivative are continuous at x = 0 for all values

of t and T one must have ¢

“)l":“”:. (5.7)
and _ :
ey (5.8)

‘respectively. The eigenvalue relation for Region
II can now be written as
hral= [ B - e2]® —mre2 (5.9)
where kz_may be real or imaginary. The four pos-
sible céses, the appropriate spatial solutions,
and thé refiection and transmission coefficients
for each case, found in the same manner as that
of NRQMBS, are listed in Table 3. The quantities w,,

1 k2' mzcz, and e & are all taken to be real and

k
positive in Table 3. The coefficient bé is zero
~in Cases 1 and 3 because no pérticles are incideﬁt
on the barrier from x = +@ . For Cases 2 and 4
the quantity k, of Eq. (5.6) is positive imaginary.
thus the coefficienf of the term exp([kzlx)-must

be zero because the wavefunction must be finite

for all vélues‘ of x. Are the results of Table 3

physically realistic?

T 4 e
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In Table 3 it is evident that the reflection

coefficient for each case does not exceed unity
and that the sum of the reflection and transmis- '
sion coefficients for each case is unicy. These
are desired results. All of the results for
Cases 1 and 4 are easy to accept since these
Particular cases correspond to the familiar re- |
sults of NRQM. The details of Cases 2 and 3
: deserve further attention.
It is readily shown that Case 2 is physically
realistic; First it is observed thatipulé mc?
because of Eq (5.5). The eigenvalue condition
_for Case 2 can be written as
le«l > K- men 0 | (5.10)
Recalllng that the kinetic energy of the partlcle
in Region I %e #a& - mc2, it is clear that Eq. (5.10)
asserts that;the barrrier height exceeds the kinetic
energy of the incident particle and, hence, that
reflectlon at the barrier 1s expected Thus the
results of Case 2 are realistic.
Now consider Case 3. The smallest value of |ex)
for Wthh the conditions of Case 3 are satlsfled is ;

2m02. This is a very large value--on the order of

IS

eS—

280 MeV for a chafged pion--and is not yet,experi—

0 ot -

mentally accessible; consequently one cannot say

with certainty whether or not Case 3 is'physically

e o
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realistic. Such a determination must aQait further
technological advances.

From these considerations it is clear that

three of the above four cases are physically

" realistic. There is not sufficient information

available for a conclusion to be drawn regarding
the fourth case, Case 3. It is hoped that ex-

perimentalists will strive to answer this question

. in the future.

The primary advantage of the FSF with regard
to the scattering problem considered here is the
elimination of reflection coefficients that excéed

unity. Thié achievement further justifies ac-

i/
ceptance of t@glFSF as the proper quantum mechanical

/)

‘description of RSP.
. : /

Ny Y TR e
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Table 3: Scattering From a Step Potential

Case Conditions@ Spatial Reflection . Transmission R+T=11
Solution Coefficient Coefficient
R T
2
1 | he, >ex a, e b4, |* 244, YES
2 ' R z
[t - 2] e Lot | kb
2 fiw, e« b o bk | o Yes
5 p 3 |
[tc.u"'%g <m2¢1
A
3 'Ew, < &€ L 0()‘8 2 ¥ é‘_gz)z .2{,'/12 Yes
— 2t
| (4
%‘J"Qfl)mlcl {lﬁl‘z (Al z)l
N hew, < EX b, e"/‘!"' l o Yes
w, 2
[t":z- -%5 <mlct®
a. All of the quantities ,, e , mzcz,'kl, and ké are real and

positive here.



"all but one of the difficulties discussed in Section

VI. A TEST OF THE FOUR-SPACE FORMALISM:
THE RELATIVISTIC SPINLESS PARTICLE BOUND BY

A COULOMB POTENTIAL

The preceeding four chapters have resolved

“I.B. The remaining difficulty arises because con-

ventional theories define the expectation value of

a functlon f as

3 i
<¥) = La}¥:’/& d”x J/<} j/’ A3y (6.1)
where' j /c is given by
30 _ -ih Y, e.ﬂ * (6.2)
£ T Z@ct gIfi:at?’ ] ‘{ ? :

with‘?a a solution of'the elgenvalue problem

q9 S‘;;= £ P L’/Z ) | (6.3)
It will be shown in this chapter that <f>con doe$
not reduce, in the non-relativistic 1limit, to the
value calculated using NRQM; whereas thé procedures
of the FSF do yielq, in the proper limit, the value
obtained using NRQM. Before proceeding further, '
let us first ascertain the region in which one
should ekpect‘the expectation value defined in

the FSF, <>FSF' to agree with that defined in

NRQM, <) yrom*
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Observe that the joint probability density ftméﬂt)

can always be written as the product of a marginal,f{ﬂﬂ

and a conditional,p (%le,x) , probability density:

peR,ctle) = petiz) o (zlet, ), (6.4)
~ Now (g)FSF is given by | ¢

= fper f [9G)p (Flete) L} det) (6.5)

where g(X,ct) is, at present, unSpecified. Equation
(6.5) reduces to the three-space definition of ex-
psctation value only for those cases in which either
the function g or else /BCH’L') is independent of t.
This is aAmathematical constraint. To completely

define the region in which()FSF should agree with
<)NRQW one must ,also 1mpose the physical constralnt

thatﬁuvmocz where mg is the rest mass of the
7 //

particle; Thls same physical requlrement must

also be‘imposed orx(%on before it can be compared

<2 NRrqu:

A special case which satisfies all of the
] _
above. conditions is that in which one takes the

~with

expectation value of a function of the spatial
coordinates,,f(i),,and the time dependence of ?h
is exp(izt))/J2T' where -T<t<+T in the limit as

T-%c0 . The resultlng expectatlon values are

y,.= L9 (ho-en ;mdx L (6.6)

Z *l,lé (tw-eﬂo)d X
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gl b7
and Ul > ;
e e A PR Sy Y iet) :
<‘F>F5F_ T-»o0 "T'T ":‘ 8 & (6'?)
o #
T—>oo =T -S:a— ‘{’Z (Ivg ng J(Ct)

where'box”normalizatibn'has been imposed in the
time domain. Equation (6.7) can %e written in the

equivalent form

e = __& £CR) '*Vz*‘f% 4% '

(6.8)
ALAVE
d
- 3§
The important difference between () oo 2nd <D FSF-

is due to the eA term in {£) If either A° or

con
T is'ihdependent of the spatial cdordinates, then
Egs. (6.6) and (6.8) agree; generally they do not.

- It 'is well known that the KC equation reduces35
to tge Schrddinger equation in the non-relativistic
liﬁit, although this violates both Lorentz invari-
ance énd the gauge is altered. Therefore the
solutions in the non-relativistic limit are just‘
the solutions of the Schr8dinger equation and it
is easy to see that Eq. (6.8) becomes.the usual
non-relativistic definition of the expectation

value. It is also clear that (%) does not, in

con

general, reduce to the non-relativistic limit be-
cause of the term of order eAQAk,. The magnitude
of this discrepancy will be illustrated for the

case in which Ao_isvthe Coulomb poteﬁtials

eﬂa__:..g_ef' ' (6-9)
r\



53
The solutions of the KG equation for the

Coulomb potential are well known. To facilitate
evaluation of the integrals it will be assumed
that Y= kZ/lB?) is Qefy small compared to (A + %)?
where ¢ is a, positive integer; orfe can then use
the recurrence relations and orthonormality con-
dition of the associated Laguerre functions. Using
these solutions to determine the expectation value

of the radius r gives

hopp= I\ 1 L “‘“))J (6.10)
and‘ : |
{e), = {M k“[‘ "@L)) 2”63} (6.11)

Zﬂt\-w - 0(622'

where n is a non-zero positive integer and

Cw= A2 Z e ] (6.12)
Dividing & eon BY (r)FSF yields
Chon o m1E 4T L, 2D 5 ez 61D
roesk $ln*+ 2%4%) ME m?
where
ﬂ(£+l%)
T e~k o (6.a0) |

The last step of Egq. (6.14) follows because Z%;Z
has been assumed negligible relative to a positive
integer. - The magnitude of the difference between
<r>con and (r)FSF is now easily obtained. Suppose
a ;+ particle is bound by the Coulomb potential due

to a Helium nucleus. If the ® 1is in the 2P state
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: .
then (r) . . is 80% larger than.(k)FSF’ This sub-

stantial difference* persists in the non-relativistic
limit.
One can readily cﬁeck the non-relativistic

limit ofﬁ?PSF.by'first rewriting it as

e S i
ese = 3 [E2 et S ’ oo
In the non-relativistic limittu~4n0c2 and Eq. (6.15)
becomes
M-, = ﬂz ¢ £ 6. 6

which is pre01se1y the result calculated using the
non-relativistic Schr8dinger theory. The non-
relativistic 1limit of <n>con is
s m? 6.
<, 2 —é—me,. §[1+4~ (6.17)

Wthh differs 81gn1f1cantly from the expected

result. The above comparison clearly shows that
the~four—space formalism properly reduces to the
non-relativistic 1limit for such stationary states

but the conventional theories do not.

% For ax - % system djcon is 20% larger than

(r)FSF for the 2P state.
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VII. CONCLUSIONS
¢
The four-space formulation presented here exhi-
bits a number of features which favor its acceptance
as the proper qﬁantum mechanical theory to be used
when describing relativistic spinless particieé.

First, the FSF preserves the useful features

of conventional theories, i.e. the solutions of the

usual KG equation are retained* and the usual pro-

cedure for calculating cross-sections from scattering

~theofy can be employed.

Second, the FSF removes an inadequacy of con-

ventional theories. In particular, the concept of
"negative probability density" is replaced by the
Born interpretation.

Third, gaps in conventional theories are filled

by the FSF. 'These gaps are as follows:
i) Conventional theories cannot consistently
define a Hermitian Hamiltonian, and hence .
orthohormality relations except for the frge
parficle case.

ii) Conventional theories fail to provide é

3* The eigenvalues have been reinterpreted, however.

s
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correspondence to non-quantum relativistic

mechanics although such a correspéndence should
exist. The FSF does provide such a corréspondenoe.
iii) Conventional theories ao'not interpret jo/c for
neutral particles and their antiparticles in a
mathematically non-trivial manﬁer. The FSF

does provide a proper framework for such particles.
iv) Existing single-particle theories cannot
consistently describe particle decay. The

FSF.does.

Fourth, the FSF provides a resolution of the

Klein paradox which, it is hoped, will be experi-

mentaliy tested in the future.

'Fifth; the FSF corrects an error of conven-
.tional theories. Specifically, the non-relativistic
limit of expectation values defined by conven#ional
theories does nof agree witﬁ the expectation values
of NRQM in the region where agreement is expected.
The expectation values defined by the FSF do agree,
within thébproper range of applicability, with those
of NRQM. '

A significant‘aspect of the approach taken
here to formulate the FSF is that it places prob-
abilistic concepts as the basis of quantum theory.
This approach offers avenues for further develop-

ment; in particular the topological interpretation

of the Heisénberg Uncertainty Principle déveloped

)
3
i
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for the non-relativistic tbeory25 then applies to

this relativistic theory.

Though further development of the FSF is re- .

quired before a firm conclusion can be drawn, it

‘seems, in the light of the featurés exhibited in

this paper, that this formalism does represent a
consistent relativistic quantum mechanics for

spinless particles. It is suggested that the

. four-space formalism should properly replace the

conventional Klein-Gordon formalisms.
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APPENDIX A: NOTATION

The metric %o is given by .

fa“v}E ] O O o

o - o0 o

© o -1 o
g o o -]

The space-time coordinates (ct Y;‘j,i) are denoted by the

(1)

.contravariant four-vector

{X“}E(&t,x, ’}z.):' (xo, xl/XzI x?)J (2)
and the space-time covariant four-vector is

(3)

i }"' iav,u xu} (xa,x/)xzjx:g) (t ‘7)

The four- momentum in momentum space is-
/

I

{T } = 67? J.fx‘)fg lf%) S | ()

/
|

)
i

In k-space P“ is given by

{f«}‘j’: & (g__i ) I<,‘,kJJ ké)s-[{;ku} ,  (5)

and in the coordinate representation the four-momentum

qperator-is y .
_-{;i;aﬂ}g(zﬁ_az *tv) (6)

where
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0, = 2 . | _ 4 (7)

‘The covariant form of ‘the four-momentum operator is

{—ﬁu}: f{kéujz .L'i\'(_i%?)-ﬁ‘) (8)
where

s ., (9)

Ix“
Lastly the four-vector potential is
A= (5,0)= {92R) o)

. . _
where §‘ is the real scalar potential and A is

the real vector potential. The Einstein summation

~convention is invoked unless otherwise noted.
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APPENDIX B. DIRECTION OF PARTICLE PROPAGATION
FOR‘THE CASE OF

SCATTERING FROM A STEP POTENTIAL

Retall that .

_-uﬁ ¥V _WaP*¥T_ e RY px b
= [W X, Oxul @wmc v 4ﬁ. (11)
and
SRegion I: (A% /1= (0,0) (12)
Region II: (go!g'); (d/?) .

For the t and x components one has

PV -k [LHW (,uaqv%] f?w*w

2vnc

(13)

and , .
¢ . * ¥ _ g__'w“”’]
/ov'?ﬁ:ﬁ'[w i e (1%)
respectively. One can now determine the propaga-
tion direction for a given plane wave solution in

a specified region. These results are tabulated

in Table 4.
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Table U

of Plane Wave Solutions

it

Propagation Direction

Region® '~P Vo \ Propagation Direction
I (wt He - Forward in t
e ma
. - ife Lo Backward in t
e m <
£ bx E -j{_{x Backward in x
m
~ilx hh Forward in x
e iR M
1 cwt Hew-ed ' - Forward in' t if fw>e«
/- =
' . gne Backward in t if kKew<ea
/',if/’ Stationary in t if fwwea
Vi
’ —;::]w’i' “Res-c s Backward in t
e | M C :
hx " -kb Backward in x
L m
i b LY Forward in x
. "

a. The quantities w, k and e« are all real and positive.
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