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It is shown how the handedness of the massless leptons, and the Poincaré
invariance of leptonic interactions, can be based on a new group of external

symmetry.

1. The description of massive leptons by Dirac's equation is extremely
sucressful. Muons, as well as electrons seem to obey quantumelectrodynamics
to the higher degree of accuracy. The usual mass zero limit of Dirac's equa-
tion does not give such a satisfactory description of neutrinos, as only
half of 1ts degrees of freedom seem to be realized in nature. A reason for
discarding part of the dynamical possibilities is not to be found in the
context of Dirac's theory.

In what follows, first an equation for massive spin one half fields, which
is equivalent to Dirac's equation, is given. The mass zero limit of this
equation, however, is different from the usual mass zero Dirac equation.

It is studieﬁ‘,especially with regard to its symmetry properties. These

- external - symmetries are then taken as a basis for a new theory of spin
one half particles. We have to assume an Indefinite metric in the many-
particle vector space, but we are able to attribute a probability inter-
pretation to our formalism. We then are forecibly led back to Dirac's theory
in the massive case, and to a description equivalent to Weyl's theory for

massless particles, as observed experimentally.

2. The Dirac equation for masslve particles

_é..}l-‘ax\l, = m \Y (1)

leads, by the transformation

ke -l +'h
¥ = (\m P++m P_)\}f i (2}
where

g
Pi:‘?_“ig )) (3)

to an equivalent equation for wf :
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Its limit for m — O (leaving out the A )
K . Ry
X laK‘f/ - F)_ l (5)

1s inequivalent to the m — { limit of the original equation.

Continuous Poincaré transformations induce linear transformations in the

solution space of the c-number ecuation (5). However, a nonsingular invariant

norm does not exist: the continuous Poincaré group is not a symmetry group.

The symmetry group of (5) consists of the 3-dimensional space-rotations
and space-time translations (defined as in the Poincaré case), and of the

dilatations
Yo = (- e -eP)YLe-ax) .

Furthermore, 1t contains the usual time inversion and a spatial inversion:
l; 2 / k' T ~)
Yo, R) = (vray 1 Pk X))

N
Only for X = 1,8,-1,-2,-3,.... or :2: %, —%, —%u -%,....... i1s the corres-

ponding invariant norm the space integral of a local density:

-2 1) -2(8-1) ‘ +/_20 -wy <24+
N:gz Y( | O)w ( )resp.N:Sd§Y(-w l)w *’
- 2 , o { ¢’ s {1
where wmi= 0.1V , and the cholce ¥ =(.l ), X=t..o’\b< ). K___{ ,‘..a)is
made. Note that N 1is (positive) definite for halfintegeri‘, while inde-
finite for integer A
The above mentioned continuous group, generated by eight infinitesimal
eiements, is ca#led GI_ . Completed by the spatial inversion we shall
denote it by G and further completed by time reversal it is called G.
This group differs basically from the symmetry group of the mass zero Dirac

equation, which is the conformal group.

5. Since the equation (5) (or its counterpart with P+) exhibits a handed-
ness, we attempt to describe the neutrinos of nature by this mass zero
limit rather than by the Dirac equation.

One thus might hope to obtain in a natural way a description of the handed-
ness of neutrinos. In the fol'owing the point of view is taken that the

symmetry group G? is the basic group of external symmetry. Time reversal,
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which completes it to the symmetry group of (5), will follow as a conse-
quence in the context in which it is used.
Taking then the group GT as starting point, one can construct, in the way
always used for the Poincaré group, unitary representations, and covariant
operator fields. The concept of mass does not exist for the group GQ
(for the Poincaré group it is a Casimir operator). The group GT admits
as Casimir operators the absolute value of the helicity, and a quantity ec,
the ratio between the infinitesimal time translation operator - the energy -
and the absolute value of the momentum: the "lightcone" is, also for the
group GT , a natural feature, as for the Poincaré group. Only here many
cones are a priori possible, corresponding to different values of the
Casimir‘operator e

An irreducible unitary represenﬁation of the group G can be construc~

ted, for helicity % in absolute value, and a given ¢ . A baszsin the

- representation space is spanned by elgenstates of energy, momentum and

helicity; both helicities (i%) oceur due to the spatial inversion in the

group qu . A priori both types of statlstics are possible; we prescrihe

Fermi statistics, and-extend the representatisn to the corressonding Fock
space. Two of  these unitary representations,. with the same value of the :

Casimir ‘operater c,. are necessary to cnnstruct a lncal covariant two-

. .eomponent field, just as in the Pnincaréi case ‘particles and antiparticles

with the same mass are. needed. The requirement of locality of the charge.
density in terms of %),k? ,4;:kp*- again leads. to the above mentioned
restrictions on the dilatation dimension £ (which can always be taken tc
be real). ™ the other hand, locality of the equal time anticommutator re-
stricts X differently: JQ= 1s %, 2, g,.... Only AR= 1 leads to both a
local set of equal time anticommutators and a local charge density. The

equal time anticommutators are in this case
Lo, 3y, ¢ (8,51 =0
LlhT), pLeyy =28 -3) ‘ (9)
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Note .that we took x" = ¢t ., ¢ the value of the Casimir operatorlmén—

- tioned .above.

The anticommutatorzs (9) lead to an indefinite metric in Fock space, a

property most impartant fer what follows. The equation of motion of the
twn..component field: (P., which eontains both-helicities due to space-
inversion covariance, 1is the d'Alembert equation, written again with the
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value of ¢ corresponding to the representations contained in.tg . In the
context of the d'Alembert equation, the indefinite metric arisiné from the
imposed Fermi statistiecs, is not astonishing.

The connection with the 4-component fileld '*’ above can be readily esta-

b ished:

| k ¢$
= N % :
Y L - 57'," }c\ (10)
v 'S 1
Thus we achieved a quantization of equation (5).

4, The equation of motion of the free twocomponent field (F follows from

a Klein-fiordon type Lagrangian
) + X
Lo d 1)
0 - 1) It—)f LP
This Lagrangian allows all the operators of G+ as symmetries; its dila-
tation dimension is 4, leaving the action invariant under dilatation. The

quantization rules take the "canonical form.

{K\-’(k,;) )—W\f(k|§\K = \5}(;_:‘\

+ = . - ok (11)
{L‘) th) X er‘,_(l’g\ﬁ)j:-ig(x_\s)

(all other pairs of operators anticommute at equal times).

Another Lagrangian, differing from the preceding one by a divergence, is

(o) g alby 114 / |n~\
= - (! ’ a d_ |
L7z (9707 ) (o 9 4) (12)
K _ , 2 _
where o = | )Uh) d,/: I
“ ) and therefore
< r ) ' K K
o' +0" 0 = 2%
The form of the commutation rules (11) is maintained, though with a dif-

ferent meaning for ,17?*- Note further that L<o)+ £ L(O), so that

Tr«(z* % ka )+‘

For convenience use shall be made of L(o) , rather than LO . It is mani-

T

I‘\
festly invariant under G+ , only invariant up to a divergence under space

inversion.
The dilatation invariance of the system can be broken most simply by a
(o)

term proportional to qflf in L'/, called a "mass" term. The correspon-

ding field still leads to an indefinite metric in Fock space, which pre-
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vents a probability interpretation in the usual way.
It is, however, possible to introduce a new metric in the vector space of

states, which satisfies the followlng requirements:

a) the new conjugation of operators defined by the new metric - denoted

by 1- as distinguished from the old + - is locally conneected with the

old one.

b) the operators of GI (except the already broken dilatation) are unitary
also with respect to the new metric.

By a) we prepare the way for a similar discussion for spinor fields in
local interaction.

Indeed, a collection of such new conjugations is possible, given by

k. 2"
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where n 1s an arbitrary positive or negative integer; and the arbitrary
real constant ¢A has the dimension of a mass.
Note that
- i 2
2 | o)
?“a I ™

\ o i ika 20’}“.% .

P

+
As a consequence the conjugates of and 7. are also local expressions
\

in terms of lf and TH?+ R

The existence of such mew metrics, locally connected with the original one -
the Mlocal interpretability" - is made possible by the mass term. However,
also for the massless case this line of thcught will lead to results, to

be discussed in section 6.

5. The choice of interpretable metrics as found in section 4 for free
massive particles is further restricted in the presence of electromagnetic
interactions.

The gauge invariance of the massive Lagrangian L(O> - mg(?ﬁ? leads, in
the usual way, to the introduction of four potentials, Ak and AO . The
free part of the Lagrangian pertaining to them has to be G - invariant
as well as gauge-invariant, and it vumm out to be identical to that of

electromagnetism, however, with a light velocity in general different
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from the ¢ of the particle field. We therefore make the additional assump-
tion that both limiting velocities are equal, which ensures that all one-
photon states, as well as all one-particle states are eigenstates of the
S-matrix.

We furthermore assume that no interaction term in the Lagrangian breaks
dilatation invariance, so that this invariance 1s violated by the mass term
only.

In the original indefinite metrfo- associated with + conjugation in the
incoming fields - the S-matrix can be formulated in terms of the interaction
Hamiltonian as a functional of the incoming (free) fields. Now again one 1is
invited to find a new metric, associated with a new local conjugation, in
such a way that rotations and translations are represented by unitary ope-
rators, and with respect to which the scattering operator is unitary. The
external symmetry operators in the space of asymptotic states being the free
ones, one is led by the first conditions to exactly the same choice of new
conjugations as was dealt with in the preceding section. Examination of the
possible interaction Hamiltonians - corresponding to minimal Interaction
and Pauli-type terms - yields that the latter are, for no choice of n ,
hermitean in the new sense, while the minimal coupling term only is hermi-
tean for n = 1. A metric corresponding to this value of n 1indeed is po-
sitive definite. It turns out that the S-matrix obtained via this metric

is the usual S-matrix of quantumelectrodynamics.

Therefore it is shown that a dtcovariant spinor field, which by breaking
dilatation invariance acquires mass, and which is gauge-invariantly coupled
to the electromagnetic field (without further breaking of dilatation in-
variance) leads to the S-matrix of quantumelectrodynamics, with its additio-
nal symmetries up to full Poincaré symmetry. The only acceptable metric
happens to have the property, that it is positive definite and that Poincaré
transformations which are unitary with respect to it leave the S-matrix

invariant.

6. The question arises whether the original field, where dilatation co-

variance is not broken by a mass term, also permits introduction, in a

local way, of a new conjugation, so as to lead to a positive definite metric,

accessible to physical interpretation ("principle of local interpretability").
Such a new conjugation should clearly be impossible if one requires the

complete group GT to be represented in a unitary way with respect to the

new metric: again part of the symmetry group has to be given up.
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Requiring only the hermiticity of energy, momentum, angular momentum and
charge in the new metric does nog lead to a new local conjugation of all
operators concerned. As (P obeys a Klein-Gordon equation, the independent

+ ; o
fields are: ({ Jt% ,L?\Le , but another choice is more convenient:
7 ._)\K" ) + +("'K\(>
et €O AT S (e P~ R
Only one pair of fields among these four can be taken as each others new
conjugates, under the conditions enumerated above. An example of such a

pair is

a0 A
LF N °? W >

&

so that

.s{
T ~+= \«‘A_\v -+ x‘\() = 4
(e - - (‘? ey ‘iw K _(“? a Q’V\ " k? ) (14)

Such a singular conjugation is also suggested by (13) in the 1limit m —> Q.

Becgpse of the fact that fTK‘OK has zero among 1ts eigenvalues, the operator
-+

LP does not exist in this example. Furthermore, as a consequence of the
equations of motion
R K b T
.{/ cz ‘DK .40 or (O" \aKkP) =29 @sy
—

The metric corresponding to this conjugation therefore has to be such that
some operators ( q) ) do not have a T conjugate, while others

( G“k\akkg ) have O as their T conjugates. This camnot be realized with
a non-singular metric in the full vector space.

It can be realized only in a subspace. The metric in this subspace correspon-
ding to (14), (15) turns out to be such that left-handed particle states and
right-handed antiparticle states have a positive norm. Right-handed particle
states are outside the subspace, whereas left-handed antiparticle states

have norm zero. So the metric corresponding to (14),(15) is semi-definite

and defined only in a subspace.

Thus only left-handed particle states and right-handed antiparticle states
are physical. The right-handed particle states and left-handed antiparticle
states do not contribute to matrix elements of physical operators. They are
unphysical and play a role similar to scalar and longitudinal photons in
quantumelectrodynamics.

Of course, there are three other equivalent metrics where particle and

antiparticle and/or left and right are interchanged.
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In view of the fact that the new conjugation is not defined for every field,
the original conditiors, aiming at hermiticity in the T sense of energy,
momentum, angular momentum énd charge havé to be reconsidered. It turns out
that indeed the restrictions of these quantities to the subspace with semi-
definite norm, are '( hermitean with respect to that norm.

The degrees of freedom that do appear in the expressions of these projected
physicaﬁquantities are then exactly those of one Weyl field, containing
partic@es of one helicity only, and antiparticles of the opposite helicity.
The formalism then again admits all the transformations of the Poincaré
group as T' unitary transformations.

In fact, the most general metric that is possible in this massless free
case is slightly more complicated than the one given by (14),(15), though
it is still characterized by the property that only particles of one heli-
city and antiparticles of the other helicity are physical. It is only by

considering interactions - in this case weak interactions with an interme-

diate boson field - that one is able to fix uniquely the conjugation. This
is analogous to the massive case, where the electromagnetic interaction
prefered one conjugation out of several possibilities characterized by an
integer n of the free case (section 5).

A closer consideration of the S-matrix, obtained via the metric given by
(14), (15), teaches that it indeed is unitary and equal to the usual S-matrix

of weak interactions.

Summarizing, we have shown that a description of quantumelectrodynamics and
of leptonic weak interactions, starting from the group G¢ rather than the
Poincaré group as group of external symmetries, is possible. The vector
space of states and the equations of motion can be described in the frame-
work of G’Y , and these determine in themselves a unique invariant positive
definite metric in the space of states. The Poincaré invariance of the
phenomena appears as a result, rather than as an initial assumption. The
advantage of this point of view 1s that the handedness of massless spin

one half particles comes in in a natural way, whereas in the usual quantum
field theories of weak interactions it is put in by hand, by the choice of
the coupling parameters.

The use of G'r as the group of external symmetry seems to have further
promising consequences for the problem of combining external and internal
symmetries, and for the understanding of superselection rules for lepton

number. These aspects will be dealt with in a later communication.
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