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An expression in quantum-field-theoretic l%nguagc of the four-space formulation (FSF), upéc:all\ the FSF
group propertics, is derived by generalizing Schwinger's formulation of Lagrangian quantum field theory
(LQYT). The resulting theoretical framework includes a mass operator in addition to the energy-momentum
and angular momentum operators. It also contains LQFT as a special case. Broad conclusions regarding
conservation laws (of rest mass, energy-momentum, and angular momentum) are obtained from the general
// formalism. Many mathematical details cnnccrmng the FSF group and FSF transformations are presented.
i - INTRODUCTION has the form
A4 I g
x 5 Tel2
The most widely used formulation of Lagran- I, =f ] Aol L (62)
gian quantum field theory (LQFT) is that by ’ Ten
Schwinger.! His formulation began with the de- and Hamilton’s principle requires that :
finition of an action operator Wy in terms of a 5l.=0 .6
function £ of ficld operaftors ¢,(v) and theu first <l - ; (6b)
derlvmves such that where both 7, and L , are invariant scaiars. and
the proper times Tan T2 are kept fixed. In a rela-

Lslgalx), ay dm(-*))dx. i (1)

Rs

W=

The quantity R denotes an mflmte four-volume
in space-time that is bounded by the spacelike
surfaces o,,0, as in Fig. 1, and the invariant
measure dx is defined as

axzddddstaxt. . @)
The no@étion used here is that of Roman,? namely

8, =0 /ax" : ' (32)
and ;

o' =g"%a, =08/8x, , ; . (3b)

where the nonzero elements of the fundamental
metric tensor g,, are

800=1=-8,,= =822 ~833- ' (4
By performing the variation 6W s and then postulat-
ing that §W is equal to the difference between the
generators of canonical transformations Fg at
0, and 0,, i.c.,

sWs=Fslo,)-Fslo,], : (5) .

Schwinger developed LQFT. A correspondence be-
tween LQTFT and classical field theory (CTT) can
be drawn as follows.

Classically® the invariant parameterlused to trace
the evolufion of a system point in configuration
space is the proper time 7. Furthermore, the
Lagrangian L used in a covariant formulation of
Hamilton’s principle must satisfy certain speci-
fied transformation properties, e.g., Lorentz in-
variance. The subsequent classical action integral
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tivistic CFT the quantity L , becomes an integral
of a classical Lagrangian density £, such that

Ly= f Ladx, (70
Ry i
where R is the appropriate four-volume.

The point of interest here is the similarity of
Eqs. (1) and (7). Schwinger’s procedure is clas-
sically analogous to varying L , rather than/
This raises the question: What would QFT look
like if the action operator was redefined to more
closely parallel CFT? The answer to this ques-
tion will be obtained by defining an action operator
A analogeus to 7, and then evaluating &1. The re-
sulting formalisin is aesthetically appealing for
two reasons: It closely parallels CFT; and it re-
tains all of LQFT as a special case. Beyond aes-
thetics, however, is a physically significant mo-
tivation for performing the ensuing derivation.
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FIG. 1. Schwinger’s infinite four-volume Rg. The
arrows denote unit four-vectors normal to the spaceiike
surfaces oy, o0;.
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