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CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

THEORETICAL ASTROPHYSICS 130-33 TELEFPHONE (213) 356-4597

June 21, 1982

-Mr. Odylio Denys de Aguiar

Rua Massaguacu, 130, Cidade Jardim
12200-Sdo José dos Campos - S.P.
Brazil

Dear Mr. de Aguiar:

This replies to your letter of April 15, I do not know of
any experimental physics group anywhere in the world which is trying
to do serious experiments on the production of gravitational waves by
interactions between electromagnetic waves and electrostatic or magneto-
static fields. Many theoretical estimates have been made of the strength
of such produced gravitational waves and of the prospects tg,ﬁetect them,
All correct estimates of which I am aware conclude that it jis.hopeless
to generate detectable waves in this manner. The best esti
of are those made by Leonid Grishchuk and his colleagues i
do not have precise references, but you might check the nam _
Grishchuk, Ya. B, Zel'dovich, and Vladimir B. Braginsky in bi ographies’
of physics publications; the relevant papers were published in the early
or mid-1970's.

On the d% hand, there are several experimental groups working on
the detection’ 'cosmic gravitational waves by their interaction with
electromagnetic fields. These groups include our own here at Caltech,
the group of Professor Rainer Weiss at MIT, the group of Professor Billing
at the Max Planck Institute for Quantum Optics in Munich, Germany, the
group of Ronald Drever at Glasgow University in Glasgow, Scotland, and a
group in Novosibirsk, Russia. All of these groups are using laser inter-
ferometry to attempt the detection of gravitational waves. There are
also ideas fioating around for detection of gravitational waves by their
interaction with microwave radiation in microwave cavities. I enclose
one reference, by a colleague of mine, on this subject.

So far as work for the Ph.D. is concerned, I would suggest that you
consider the following experimental gravity research groups: _Professor
Vladimir B. Braginsky, Physics Department, Moscow State University, Moscow
117234, U.S.S.R. (he is using microwave-cavity transducers to monitor the
motion of a sapphire~crystal bar gravitational-wave detector); Professor
Rainer Weiss, Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139 (he is using laser interferometry to monitor .
the motions of freely swinging, widely separated masses, for gravitational-
wave detection); Professor Ronald W, P, Drever, Gravity Physics 130-33,
California Institute of Technology, Pasadena, California 91125 (laser
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interferometry as above); Professor Ronald W. P. Drever, Department of
Natural Philosophy, Glasgow University, Glasgow, G12 8QQ, Scotland
(laser interferometry as above); Professor H. Billing, Max-Planck-
Institut flirAstrophysik, D-8046 Garching, F. R. Germany (laser
interferometry as above); Professor David Douglass, Department of
Physics and Astronomy, University of Rochester, Rochester, New York
14627 (bar detector for gravitational waves, monitored by SQUID
transducer); Professor Joseph Weber, Physics Program, University of
Maryland, College Park, Maryland 20742 (bar detector); Professor
William Hamilton, Department of Physics and Astronomy, Louisiana State
University, BaES;“Rougo, Louisiana 70803 (bar detector).

I hope that this information is of some help to you.

Sincerely,

Lo e

Kip S. Thorne " L/
Professor of Theoretical Physics

KST:jba
Enclosure

Dictated by Prof. Thorne just before a one-month trip to Europe; typed
and signed in his absence by JoAnn Boyd Anderson.
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MICROWAVE CAVITY GRAVITATIONAL RADIATION DETECTORS ™

Carlton M. CAVES

W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

Received 26 September 1978

The coupled electro—mechanical system consisting of a microwave cavity and its walls can serve as 2 gravitational zadia-
tion detector. A gravitational wave interacts with the walls, and the resulting motion induces transitions from a highly ex-

cited cavity mode to a nearly unexcited mode.

Microwave cavities with superconducting walls may
have a variety of applications as detectors of non-
newtonian gravitational fields. The response of a micro-
wave cavity to a time~changing gravitational field is
quite complicated. Both the electromagnetic field in the
cavity and the cavity walls interact directly with the
gravitational field; in addition, the electromagnetic
field and walls interact with one another at the bound-
ary between the two.

I have developed a formalism for analyzing this com-
plicated electro—mechanical system in the presence of
a weak gravitational field. A previous paper [1] sketched
an application of the formalism to a proposed experi-
ment to measure dragging of inertial frames. This letter
presents results of applying the formalism to micro-
wave cavities designed to detect gravitational radiation.
Subsequent papers {2] will give details of the formalism
and of its various applications.

In 1971 Braginsky and Menskii [3] suggested using
microwave cavities to detect high-frequency gravita-
tional waves (v ~ (cavity’s fundamental mode fre-
quency)). I have analyzed their high-frequency detec-
tors and have also found new designs for, and developed
the theory of, detectors designed to operate at much
lower frequencies. After the first formal (but unpub-
lished) write-up of my analysis [4], I became aware
that Pegoraro et al. [5] had arrived at some similar de-
signs for low-frequency detectors.

® Supported in part by the National Aeronautics and Space
Administration (NGR 05-002-256 and a grant from PACE)
and by a Feynman Fellowship.

Both high- and low-frequency microwave cavity de-
tectors operate in essentially the same way. A gravita-
tional wave inciderft on the cavity couples its electro-
magnetic modes and thereby induces transitions be-
tween modes. The coupling is due to the direct inter-
action of the electromagnetic field with the wave and
to an indirect interaction in which the wave interacts
directly with the cavity walls, whose resulting motion
couples the electromagnetic modes. In the simplest de-
tectors, the cavity is designed so that two of its modes
are strongly coupled by the gravitational wave. One of
these two modes (mode 1) is driven into steady-state
oscillation at its eigenfrequency; initially the other
mode (mode 2) is nearly unexcited. A passing gravita-
tional wave with Fourier components near the splitting
frequency between the two modes “pumps” quanta
from mode 1 to mode 2, and the wave is detected by
monitoring the resulting excitation of mode 2.

Focus attention now and for the remainder of this
letter on low-frequency detectors — those designed to
operate at frequencies much lower than the cavity’s
fundamental mode frequency. Since the wave’s charac-
teristic wavelength is much larger than the cavity’s di-
mensions, it is convenient to describe the wave in
Fermi-normal (“physical’”) coordinates [6]. In these
coordinates the motion of the cavity walls is described
by the local displacement vector &, which is governed
by the usual equations for an elastic medium subject
to a tidal force produced by the gravitational wave and
to stresses at its boundary produced by the electromag-
netic field.

However, analysis of the electromagnetic field in these
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coordinates is complicated because the boundary of
the cavity is moving. To handle this difficulty [2], one
transforms to new coordinates in which the boundary
is at rest, and one chooses the new coordinates so that
they differ from the old coordinates only in a small re-
gion near the boundary. In the new coordinates one

uses the artifice of writing the curved-space, generally-

covariant Maxwell equations in a form which is identi-
cal to the flat-space Maxwell equations for a moving,
anisotropic medium [7]. With the Maxwell equations
recast in this form and with the boundary at rest, the
boundary conditions are the familiar ones. All informa-
tion about the interaction of the electromagnetic field
with the gravitational wave is contained in the “dielec-
tric tensor” € and the “velocity” g of the (fictitious)
moving medium. At linear order in the gravitational
wave amplitude, € and g split cleanly into terms repre-
senting the direct and indirect interactions. The indirect
interaction terms are proportional to the physical dis-
placement of the cavity boundary; the direct interac-
tion terms are smaller by a factor ~ (cavity dimension/
gravitational wave wavelength)2 and can be neglected
for low-frequency detectors.

The recast Maxwell equations and the mechanical
equations can be decomposed into normal-mode equa-
tions. The Coulomb-gauge vector potential is expanded
in terms of the cavity’s normalized electromagnetic
eigenmodes A1 A = Z, Ay A, Ay AV =3 ),
and the local displacement vector is expanded in terms
of the walls’ normalized mechanical eigenmodes &, &
=Z.d.E, (M~1 SpEyEgdV = d o> Where p and M are
the density and mass of the walls). The result is a set of
coupled equations for the normal-mode coordinates ¢,
and d,, in the absence of dissipation [2}.

In the case of interest, mode 1 is highly excited at
its eigenfrequency by an gxterngl source (¢,
= Re(4e'“1%); (total energy in mode 1) = U
= w% 1412 {8m), and mode 2 is strongly coupled to
mode 1 by wall motion, Typically, only one mechani-
cal mode (a = m) couples strongly to the gravitational
wave and, at the same time, produces displacements of
the cavity boundary which strongly couple the two
electromagnetic modes. Neglecting all other electro-
magnetic and mechanical modes, one obtains equations
for ¢5 and d, in the presence of a highly excited mode
1. With addition of empirical damping terms and ne-
glect of high-frequency stresses on the walls, these
equations become
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Here w and w5 are the angular eigenfrequencies of
modes 1 and 2 when the cavity is fixed in the shape it
has after it is distorted by the time-averaged stresses
produced by the field in mode 1: w, is the angular
eigenfrequency of the mechanical mode; 271 s a field-
wall “matrix element’ given by

£-1= I(T? 'Tl — A, .Al) (gm ~da),

S
where 7, = w,jl V X A, and dz is the outward-directed
surface element of the cavity boundary;and

- o | o ; k
fn= M o5 YRy 0 ¥4V

where the R are the “electric” components of the
wave’s Riemann tensor. The terms in egs. (1) involving
Ll represent the coupling of modes 1 and 2 by wall
motion (eq. (1a)) and the force exerted on the wall by
the electromagnetic field (eq. (1b));.f;, represents the
coupling of the mechanical mode to the gravitational
wave.

It is convenient to introduce 2 dimensionless com-
plex quantity u defined by ¢ = Re(ude™ "), The
Green function solution for p is

/4

u()= [ &t 1) fru()de',

0
where
iw, 2 5. +w, —iB
1 j 21

N — idSi(2--2")
gt t)=5= 1 ' , 2
) 2.2 j=1 ﬂk#(di—dk) ( )

for ¢ > ¢'. Here w4, =w, — w), and the s are the
roots of the quartic equation
@2 -l —2i8,8) (S* - w3y — 2iBS)

= w Wy LU 12M). 3)
The real parts of the &’s give the detector’s operating

frequencies.
The &’s change as the field in mode 1 is turned on.
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Fig. 1. Diagram of microwave cavity detector described in text.

For large fields, they can differ substantially from their
zero-field values. Unless the entire system is designed
carefully, one or more of thed’s may have a large and
negative imaginary part;and mode 2 will be unstable.
This instability can be avoided by suitably arranging
the mass in the cavity walls and by suitably choosing
the cavity’s zero-field shape.

One possible design for such a detector is shown in
fig. 1. The microwave cavity is nearly cylindrical with
radius R = 10 cm and length 2L = 500 ¢cm. The micro-
wave modes are the two TE, 11 modes with angular
frequency w; = 6 X 10? rad's™ ; for a perfect cylin-
der these two modes are degenerate. The magnetic field
lies principally in the z-direction; in mode 1 it hasa

“cos ¢’ azimuthal dependence, and in mode 2 a “siny”

dependence — where g is measured from the x-axis.
Mode 1 is driven to a magnetic field strenoth & 730 G,
which corresponds to total energy U; =~ 9 X 108 erg
and number of quanta NV} ~ 0“6. A}most all the mass
in the cavn) walls is in four lobes — each of the mass

m = 10° g — which extend a distance / ~ 500 cm from
the axis of the cavity at angles midway between the x-
and y-axes. The relevant mechanical mode is the one
whose motion is indicated by the ldrge 41r0w§ in fig. 1;
its angular frequency is wy, ~ 10> rad s~ ! . The zero-
field shape of the cavity is chosen so that <~5, = 3. 2“’9!
+3i8, d = 28w, — 2if, I3 = ~c52,and Jg = =d)
((operating frequency) = 500 Hz)"'.

*! Mode 2 is unstable on time scales of order the electromag-

netic damping time {Im(cJ;) = —2p]. This weak instability
is of no concern for measurements made on much shorter

time scales; it can be eliminated by using “artificial damping”.
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The lobes have been placed so that they couple
strongly to a gravitational wave with “cross” polariza-
tion propagating along the axis of the microwave cavity
and so that the resulting motion of the walls strongly
couples the electromagnetic modes (£~ R). Such a
wave, with dimensionless amplitude /2, characteristic
time To S o5 l—l ,and duration 7, changes the amplitude
of 1 by an amount

|dugl = (1/6)h(w, 7) (/R) (/) ~ 3 X 10712,

forh~2X%X 1072l and 7~ 37, = 1073 5. This sensitiv-
itv goal is comparable to the most optimistic design
goals for I km baseline laser systems and third-genera-
tion bar antennas.

To detect the wave, one must be able to monitor
this small change in ¢, . For example, one might probe
the magnetic field in mode 2 using a small wire loop
whose output is fed into a standard linear amplifier
Such a linear system attempts to measure ¢, as a func-
tion of time, which means measuring both ¢, and éz;
the uncertainty principle ((Ac,) (A¢,) 2 2#i) guaran-
tees that the system cannot determine p with greater
precision than [Au] > (2NV,) ™12 ~ 6 X 10714, This
limit is small enough that 2 standard linear system,
provided it is nearly quantum-limited, can detect the
desired change in ¢,. It should be noted that systems
which do not attempt to measure both ¢, and ¢, (quan-
tum-nondemolition systems [8]) can, in principle,
achieve greater precision.

Another serious problem is Nyquist noise (thermal
fluctuations) in the cavity walls. To achieve a signal-to-
noise ratio of 5 for an integration time = 7 requires

2 X * n\1/2 -21
thO(Tg/l)(&Tm/MTmT) ~2X 10

for wali temperature T,=3X 10“3 K and mechanical
damping time Tm = Bml ~ 2% 103 s, which corresponds
to a mechanical 0 = 10%. The mass, wall temperature,
and mechanical Q assumed here are similar to those
projected for third-generation aluminum-bar antennas.
Thermal fluctuations in mode 2 itself produce, after a
time = 7, a root-mean-square change in u of

|Aul = [(KTJU,) (ifr" )2 ~ 2% 10714,

for electromagnetlc temperature 7, =~ 4 K and damping
time 7" =B~} ~ 3 5. The correspondmg electromagnetic
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0= 1010 has been attained and exceeded in small
superconducting cavities excited in a fundamental
mode [9]. This discussion of Nyquist noise assumes
that one can couple to mode 2 strongly enough to
measure the small change in ¢, in a time ~ 7. If a longer
integration time is required, Nyquist noise will be a
more serious problem.”

It should not be difficult to design low-frequency
microwave cavity detectors which operate over a wide
range of frequencies as detectors of either pulsed or
CW radiation. For example, by changing its zero-field
shape and mechanical eigenfrequency, the detector
described here can be modified to operate at lower
frequencies (v ~ 10—100 Hz). Another possible de-
sign consists of two long cavities at right angles, weakly
coupled and excited in a high-frequency mode in which
the two cavities oscillate in phase. A gravitational wave
propagating in the direction perpendicular to the plane
of the cavities induces transitions into a mode in which
the two cavities oscillate out of phase. Alternatively,
one could omit the weak coupling and operate the two
cavities as a Fabry—Perot interferometer. This design
has been suggested by Pegoraro et al. {5] to detect CW
radiation from known binary star systems; however,
Nyquist noise in the walls and seismic noise (earth vi-
brations) would pose severe problems for such an at-
tempt. Operated as a detector of pulses in the same
frequency band as the detector described here, this
design would have comparable sensitivity.

Although I have referred to these coupled electro—
mechanical systems as microwave cavity detectors, they
can also be regarded as purely mechanical detectors
with a particular kind of electromagnetic transducer.
Viewed in this way, they are similar to Braginsky’s [10]
proposal to instrument a bar detector with a microwave

avity transducer. In the Braginsky scheme a small
microwave cavity, which narrows at one place to a
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small gap, sits on the end of the bar; the cavity’s funda-
mental mode is excited off-resonance, and movement
of the wall at the gap induces on-resonance excitation
of the same mode. The main distinguishing features of
the design considered here are that the cavity is much
larger, the coupling to wall motion occurs over virtually
the entire cavity boundary, and -- perhaps most im-
portant — the signal to be detected appears in a mode
which is spatially distinct from the highly excited mode.
This last feature may be very important in reducing con-
tamination due to the large field in mode 1 when one
attempts to monitor the very weak field in mode 2.

For helpful suggestions 1 thank R.W. P. Drever,
K.S. Thorne, and M. Zimmermann.
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