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ELECTROMAGNETISM  AND  GRAVITATION &9 :

Marie Schgnberg s Faculdade de Filesofia , Glencias e Letras da Universidade de Sao Paule

Electromagnetism and geometbry.

l. In the present section we shall consider the Men equations in a space en-
dowed eonly with a structure of differentiable manifeld , ?u’,c without affine connectien
and metrice The number of dimensions of the space will net be assumed te be four , Butsi
taken as an integer n . Our aim will be the fixation of the geometry of our mar&-:

1
fold by the requirements of the development of the electromagnetic  theory. Thus we ca%

»

get a clearer foundation for geometry than in +the general theory of relativity . We

the [lecal
shall see thatLYﬁfine connection , the indefinite)l minkbwsian metric , even the dimensien

of the space- time manifeld are grounded in electromagnetism. The Eingtein equatiens for
" \/(X) come in as equatiens for the determination of the dielec-
tric and magnetic permesbility preperties of gspace . We have already indicated the rela-

the metric tensor g
tion between those préperties and the metric in our communication te the Kyote Cenfe- |
rence in September 1965&1) The pessibility of an electromegnetic foundation of geometry
_was digecussed by us in an unpubligshed lecture at the Biumeha:u meeting of the Asso-
ciagae Brasileira para o Pregresso da Ciencia in July- 1966. The discus;sion of the pre
gent lecture includes some new developments.

It is well known that the Maxwell equatiens can be written in a space endowed
enly with a.m gtructure of differentiable manifold with a sufficiently large dimensi'on ,'

-~

provided '!Fwo fields be used : a *field FPV (x) described by an antisymmetriec covqgriant

Maxwell g .
tenser of the second efder satisfying the homogeneous| equation

DaF,y +9yF +WuFys = 0 - (12)
(3v= parb’islv derivativ%ok with v nes%ec‘b te the coeordinate x r‘)
_ (¥) Lecture given at the Institut Henri Poincare in 15/11/ 1967.
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and a gecond field described by a contravariant antisymmetric tensor dengity of the

¢ i Maxwell
secend erder (x) satisfying the inhemogeneousY equatien

’Dy‘}/t” 2 jf“ (1b)

M ¢
j deneting the charge and current vecter demsity. The equatiens (la) and (1b) invelve

enly ordinary partial derivativess not covariant ones.

We can new immediately see that the case of the dimension n=, is distingui-

’ shed by the pessibility of replacing the tensor density (‘}/f" by an antigymmetric

\ covariant temser Fuy ?5—
\symbol)
5’ 5 being the Ricei antisymmetfic Y- with four indices j because of the four-dimensienality
Tevee
of the differentiable manifeld. We shall postulate that the field can be described by

: A (already)
. the twe tensors F and F . This givesY "an electremagnetic foundation for the four -

N

dimengienality, It will be seen later that F is the minkowskian dual of F.

Equations (la) and (1b) are not sufficient for the determination of P and ’}J.
The congtruction of the electremagnetic theory requires a one- one linear correspondence
between the vector spaces of the F and the ’}" corresponding to the same point of the
- manifeld

e s g6
q; (x)_ = @ (x)~Echx) ) Ft,\y(X) ='€0pv)§y(X) ? () (3)

is a fourth order tenser density describing the properties of dielectricity

MY, §0

V,fﬁ‘
,@”

and magnetic permeability eof space, HEDEERDNISTPIINSNGES [t 1is known that é

must be symmetric with respect te the  twe pairs of indices ([V\V> )(5: o )

lu\' 5 E.C »é €0, uy
/6 = (4)
‘6 is entigymmetric with respect te the twe indices of the same pair

gﬂy’ff-—{yﬂ'fr ) éﬂ";ffz_g/w}o‘P (5

)
It follows frem the one- ene nature of the correspendence (3) that we may define éf‘y) $C
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by the genditien (3)
LB ey R e Tali g
kKX g0 K A ; A G 9a a ‘K
(wnder certain conditioms,)
It fellews,/frem equation (la) that there is a covariant vecter petential Asuch that

Fw(x) - Dp by @ -DVAF(x) ’ (7)

We get frem (1b) the set of n MMM partial differential equations for the A

| p
Y, ‘
0y (6/“ " s ) - ?’d"‘e""} - Y (®)

Equatien (8) shows that in order to determine the potential vecter A t'\(X) e

Y, §6
must know the temser density (x) . Thereby we need equations for the deter-
f\lyigf
of the tenser density describing +the properties of dielectricity and magnetic

permeability of spacey te be used together with the Maxwell equations (la) = (1b) .

; The necessity of such equations is generally overlooked ) because the electremagnetic
field is taken in the frame of a space- time endowed with a metric of a lo-

vaa
/
cally minkowskian type , so that the é (x) can be derived from the metric

Yy
gtA (%)

6”% fﬂz ik m(‘gyeg'y( ;- gé‘d'gye> (g = determinant of guy)(())

\ V- ~ Y 3 v
because TtA =N=—g FPY with FH = g‘u? g’Vd’ F?O, =l/2(go‘? g)/o" % gNrgV‘?)Fge—:.

tensor

———t— o e

A VAW o= v o STrm— T T s e e e s AV
= .”;'-;u:é—vﬁe."_\r--‘.'____:_.__-,...,..,:_.~;—;m—.----__ é N }// 5)5

Equation (9) shows that the physically acceptable temsor densities

{in the case of n =4 3 .
must satisiy) A  SEEEMEEM cuadratic equation not invelving the guy

éw,f( 67:%}(7" 5/WK) -~ (10)
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Ls

(4)

The sign minus in the right hand side of equation (10) came from that of

\‘i -g in (9) « It 1s therefore characteristic of the gHV with the Minkowski signa-

ture , the only kind having a negative determinant g .

In the Appendix we prove the following basic theorem s

The equation (10) is & necessary and sufficient condition in order that a
wy, 9o : :
tensorial demsity with the symmetry properties (4) - (5) be built with a
24 fa .
gymmetric tensor g having the minkowskian signature » g = is determined up to

MY, £6

a_scalar factor by *5

AL

Tt follows from the above theorem that the tensor density field /é (x)

deseribing the properties of dielectricity and magnetic permeability of space , which

mst satisfy equations (4) , (5) and (10) )de‘bermines up to a scalar factor s(x) a

V
field Ag” (x) that defines a metric with the right Minkowski signature. Therefore the

? properties of dielectricity and magnetic permeability of space allow to define g DN

physically satisfactory conformal geometry in our four-dimensional differentiable meni-

Y
£fald + All the tensors s(x) gH (x) determine at every point the same metric of the

angles ) although not the same gauge of length.
56

We started with the tensor density 5 )beca.use it is sufficient to write

down the Maxwell field equationsi. For the purpose of the construction of ‘the geome=

try of the space=-time it appears more convenient to assume as a Dbasic postulate

3 P
that those properties are described by a tensor field ¢ ; '96(3:) such that

Y,
ey

y .
5(x) G{u 'fa(x) (S(x) = scalar density) (11)

y}fO‘ be
The‘é may| taken as elements of a 6xb matrix ) by restricting the indices :(\44)/

and § <6 . The double indices (AV and ?0’ will be arranged as usual in alphabetic

order. It follows from equation (10) +that the determinant of +the matrix .6 s 1 &

WY, go
c and denote itgs determinant by

\

|

|

|

‘ In a similar way we assoclate a matrix to
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| : (5)
€ . Bquation (11) shows the @ - matrix is the product of the € - matrix by S.

:

Hence

} 68" = 1 $ (x) = o(x)
|

‘ 6’”’”

yeo
A CM'f (x) (12)

Y, o
(x) is completely determined by the tensor Cé‘I /$ (x) and we can now determine

Y, €0
completely the tensor gpy (x) of the expression _of 6 i (x)’ given by the

basic theoram} by imposing the condition

6x) = g (23)
in order that
" - 1 (g“"(x) g’ - g () &”F <x>) (14)
Thus we get a physically satisfactory metric field g‘uy (5 GHY) ?‘YF‘@\y F?b" igs  the
metric of the FtAy corresponding to the metriec glw V\A Vy of the covariant vectors VF.

The above electromagnetic metric g
1 S P Q
nection whose components J,?\(u are the Chrigtoffel symbols %

2
s f':o» : %%‘ ~g e g?a(b%gt*d"_ot\g?m'?oug%t‘)

23 electromagnetic (15)
This affine connection F determines the | covariant differentiation of the tensors .

Qur philosophy that the geometry of the space-time is based on electromagnetism

v gives us immediately the affine con-

}built with those

leads to the didentification of the electromagnetic g,\’w (x) with the actual metric

tensor of the physical space- time . On assuming that the actual metric of the space-

time is determined by the Einstein gravitational equations

- 4

K g RASTK T (T )= total stress temsor of natter K= G/C_)
@ By wy p a6

these will be the equations for the determination of the electromagnetic gV‘ . (=)

o_of ) g
and! the tensor CP ,? (x) describing the properties of dielectricity and magnetic per=-

( differential)
mesbility of space . Equations (1) and (16) are thug the complete set of Vequations of

i

the electromagnetic theory in a space endowed only with an a priori structure of dif-

ferentiable manifold.
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| Riemannian) (6)
Our electromagnetic construction of a Ygeometry suggests naturally that the

differential equations for the of the dielectricity and magnetic permeability

8tn)

of space are of the form

R = 1/8g &R * Kg = U (K = constant) (17)

o Wy w ©y

UW being some symmetric tensor of divergence O according to the electromagnetic co-

variant differentiation o The choice of the expression in the left hand side of

is a cova-=

(17) is justified : because it
risnt combination of the g v and their first and second order derivativese and leads
to the right number of independent equations , taking into account the Hilbert condition

imposed by the arbitrariness of the curvilinear coordinates by the fact of having

covariant divergence O o Since we want that the metric of the space-time be

that defined by the electromagnetism , the natural choice of U\a\\l is B Uf” = Tf‘y

with 5.4 constant, since thus the condition of divergence 0O of Ur\y corresponds to
total

the laws of conservation of [energy and momentum . The experimental confontration shows

that we can take K = 0 and X = 8TWK , K being the  gravitational cons=-

tant of the Einstein equations (16) « Thus we can get the BEingtein equations fraom

electromawmetic considerations o The  curvature of the universe endowed with the electro ="

magnetic geometry accouhts for the gravitational effects.

The relation between ‘the properties of dielectricity and magnetic permeability

( gravitationaly
and the gravitational field are intuitively seen in the caseYof e de-

flexion of 1light rays. From a naive optical point of view such a deflection appears

of space

gs due to a variation of the refractive properties of space , thereby to a variation

of the dielectricity end magnetic permeability .




and the tensor duality,

: @y, §6
i
2. The tensor density 'é defines a 1linear operator D on the antisymme-

tric covariant tensors va as vectors of a six-dimensional vector space

9o
o 96.’ Tq) ~ 96. A ?6-
F = D = e = 5 = 1
r‘w ( Js')?‘y 1o 8(“’€Gt Fq:w 3 FW Dw Fgo, with D§W 1/2 ﬁw,m be
The condition (10)  means simply that - 22 is ‘the operator umity 1,, o the F
°F =-F 3 r = = lop (19)
- : Krpy y =
cci temsor demsity ‘(: defines o (NS synotric bilinear form
(F(l) 5 F(z)) of the  six- vectors T
: ; : v :
(Fm, F<2>) : (Fw , Fm) = 1/ 55T BV 50) g2) (20)
Ko (Y

It is easily seen that the symmetry condition (4) means that
(Fm, 2@ ) - (Fm, DF(l))

K), uy
The symmetry condition (4) implies that +the bilinear form 1/2 6 FS') F(z)
: >[4y

(21)

8 Rk et BEL S and PE), O 4a (F(l) ; DF(?')).

It follows from (19) and (21) that
S 2\ 1) 25
(D rl ), p #l )) = - (F( ), F())' _ (a)/\ e (22)
F is a simple bivector when it 1is the outer prthwo four - vectors U 3

_ b . fa) (0
F@V UQAUY Uy Ubx A:

a simple bivector is (F,F) =0, It follows from (22) that DF is a simple bivec-

G e e

necesgary and sufficient condition for F to be

tor when F hag this property. When F are simple Dbivectors , a ne-

cessary and sufficient condition for the existence of three four - vectors U(a)

e

2

ad 00 smen tmet P = U(a)/\ y(®) emd FR) = U(a)/\ vle) gm

is  that (F(l), F(Z)) =0 . Therefore DFY) ana DF® "' i1l be two simple

bivectors built in the above way with three fourevectors W when F(l) and F(Z)

n are simple bivectors built in the same way with three four- vectors U o
e L e S L e S

Tt follous “from equations (18) 'and-(9) that

. oT 2

* 1is the dual of F corresponding to the metric g )with the ordinary defi-

‘//av,f’o‘

nition , gHV being now a symmetric tensor associate to e« D is the~-



(8)
refore the WM linear operator on the F corresponding to the minkowskian kind of

v, ¢6
/
tensor duality. The tensor density ‘éﬂ ? defines directly the usMal duality of the

t by means of (18))
sntisymmetric temsors FV, Dbecause of the conditiong (4) , (5) and (10). Thus we have
rY €6

obtained the geometric interpretation ofé and of those conditions.

The tensor § defined by equation (R) is simply the *F corresponding to
the tensor density 6 o The electromagnetic field is described by the pair of dual
tensors F , *F related through the linear operator D of square = 1op satisfying
the symmetry condition (21) .-

v 2o

The definition of the tensor duality by means of a tensor density is

more satisfactory than the ordinary definition (23) in terms of a metric tensor

%
t‘ for *F

‘,y
g s P is not changed when gp is replaced by S g“v ¢ the tensor dua-

| lity dis related to the conformal geometry of the space-time agnd
‘* !;(n B R R R T R R Y AT YRV RY) MM NNIM A2 A2 N

¢ M MMM NN NENL N2 N \p N . NS
7 AR N (VR EVATRVRTRY)
s nnnnunn:\v\nnn'\,\z\nr\,\nn;\n.\1\I\Annnnnl\nnnnnl\nn—-ﬁnnnAr‘/\vf\\/re(x:(xvv"""""

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
g

Let us consider a tensor

1
Q

Lg such that L with determinant L.

§ v e
LM describes obviously a local Lorentz transformation. The inverse Lorentz transfor-
: y M
mation is described by the tensor _L_o, with L L? ='8 e It is easily seen
Yy e Ny
that
o
A 6}“’}?6 e ‘6 e L e SRR R (242)
b G = T N To op R4
Hence
o S 1 KX ¥ § -1 €.0
FoRn S 1 (g so that L D=10DL with(L F) =1 19 F
o Y AR =K =P op.. op op /uy =y ¢o
e o } sl P e
Lop denoting the linear operator on the F giving the Lorentz transformation L“ V“ of

the V(‘\ and .L\;Uy of the Uy o, I the éase of the transformations of the continuous

Lorentz group L =+ 1 so that

LoD = DL (L =+1) ; (24¢)

P\
In the case of an infinitesimal Lorentz transformation Lg\' = 8( + 9 g“qﬁ‘.g';, @ in-

6 _ (¢ ¢t (L)
finitesimal g L = - BN so that
inites > emd L 8y 6 ¢ Vel

6| (L ()
1,7 = F+0 X (= F)t"v Sa (F(t*% Yo~ ™o “pg)

We may write |
L =4 & gt ew (Ad p(L) ) F = FUAF

(o)

% : the vector product of the Lie algebra of the

The product F(L)X F is simply



L P e A\

(9)
Lorentz grouwp . Ad F(L)is the linear operator on the F , taken as the vectors

of that Lie algebra , corresponding to the vector F(L) in the adjoint representation.
We get from (24c) for any F the equation

D(Ad F) = (ad F)D (244)
which shows the ortant role of D in the Lie algebra of the Lorentz group.

B e e A A X XV RTE R B e e L e S R B e R e SRR BT B TRV RV VEOX PR T **-?("H‘X;'X-—}‘r'.‘(‘-)(-

The above congsiderations show that the Lorentz group, which defines the local

symmetry of the space-time, appears as closely related to the  properties of dielectrici-

| Ly ond magmetic permeability of space . The Lie algebra of that group is particularly

electromagnetic , since its vectors are the antisymmetric +ensors F and its structure

vy

is defined by the g S through the product F(L)XF o hence essentially by the tensor

Ve
density .6 3 ‘».) o We are thus led to the idea that the system of the possible

electromagnetic fields at each point of the space- time is _to be viewed as a Lie al-

gebra  rather than as a vector space » The local geometry would then be a conseguence

of the intrinsic properties of the field Lie algebras The relabtions Dbetween the elec-

(geometric , |
tromaemetic algebras at different points would them lead to the global Y properties tlmougl{

linear connections etc. We shall develop this point of view in later sections of +this

paper,
o a2

Tensor duality and space- time four- dimensionality.

2. In the n - dimensional metric geometry there is a duality between the antisym=~

metric covariant tensors of the orders p and n -p

& bl S ) =1
\ l : ; 3 o n n=p ) -
*U 2t i : = g Bh *es s U (n"P)l) (2.0
&1,0',ap g 5&1,0.’411 g b;?.’.,bn—p(\ , a‘)
The construction of *U 1requires both the metric tensor gab ‘Land the Ricei symbol

Byyessd o We may also write

3 LR ] b 0 b
*7. + ( -: g) = 1/2 6 cl’ ,Cp, 152 2 n=p

g G sse U ‘ 1= l
8’1 1 a’pcpd bl’-.,b .(" p) )

a EEE] a,
L1t 2%y n-p :
(26Db)

: 2 RS g.a‘l”"a'n
using the Ricei tensor density . and

€ab °
For even n =2m , there is a self- duality of the temsors of order n g since

m=n-m, A sgelf- duality of the covariant antisymmetric tensors of the

second or~




& T— R - T - LTINS e e gt o= T T B i |

N
(10)

der exisbs omly in a four-dimensiomal space , since 2m =4, It is interesting

| —

to note that the self- duality of the antisyhmetric temsors of order m in a 2u-di-
mensienel space 1s a conformal property , hecause of the invariance of *U for the
change of gauge Bp —> S &p ° In all the other cases there is no such invariance.

Equation (26b) shows clearly +that the tensor duality is the product of

= ,-.,C ~ N l C ’..,b ¥
-t s %, S L) g
1’.',0 . 1".’cp ‘ = » n.-p
{u *U&-_L,..,ap * g G oo apc /u/ ('.'l g) B o The ' first mapp:.ng

l,.‘,cp,bl,oo,bn_r
‘does ‘mot involve the tensor 8l ? but only the Ricei tensor density b

The second mapping 1s essentially a lowering of p tensorial indices by means of the

metric temsor &b * The dimensionelity of the space comeg in more characteristically

in the first mapping , the raising of indices by means of the Ricci tensor density o

In the case of the self- dualities , corresponding to even n = 2m , the Ricei
' Bpreealoy S : ;
tensor density 6 allows to tuild’ & ! bilinear form « 0f the anbisymnetric
covariant tensors U similar to (F(l) 5 F(z))
aq".,a
L n ;
oe 98 ;
,(Um : Um) C m R gm0 - - 1P (U<2> /D)
3 a.].’to,am a.m 'hl"""’a‘Zm 7} :
The bilinear form of the Ua e is symmetric for even values of m and antisym =
g Lt ;
m mol’..,bm 1. - h
. : mam g I
metric for odd values of m o The Ual,..,a —iy inear mapping has [NHEREER

different natures in the cases of even and odd wvalues of m 4 and the tensor self-dua-

ity tooc.
It is easily seen that .
g = = l)p(n-p) (sign g)) T (27)
8 seesdy 8ysees8y Fa)
**Ual’"’am =(~1)" (eleng ) Ual,..,am ‘for n =2m (27a)
We can introduce a linear operator D, 6énc the UE:L"" defined by the condition

- T exl2 ’
DU = *U . It Ffollows fram (27a) and "the definition of (U( ) 5y U )) that

A 2
2 o= (-Deme 1 s (0,0 @) = ()= ( pu®, 1) 74

Bquation ( 27.b) shous thgt D° = 1,, for tho non minkowskien metrios of the four- din-

w.} so that the tensor duality is involutory. Thus we get the

Fundamental theorems of the local geometry.




—

| ‘ )
Theorem I o IThe four-dimensionality of the physical spatial differentiable manifold ig

determined by the condition of self- duality of the vector spaces of the antisymme-

tric covariant tensors of the second order at the different points of the manifold ,

e ——

which is required by +the degcription of the electromagnetic _fields by a pair of du-

non singular
al temsors F and *F = DF , tHSY Iinear operator D describing the gpatial properties
of dielectricity and magnetic permeability. ‘ _
Theorem II o The local Minkowski metric _and the nature of the physical spatial diffe-

rentisl menifold as a gspace - time are determined by the conditions that the D _duali-

ty of the F and *F__be nom involutory : **FSEF for F7F 0.
Geometry of the temsor duwality.

FRHHK R

2be  The self-dualities of the 2m - dimensional spaces are closely . related to the
properties of the flat m- dimensional manifolds of the tangent spaces .The flat .m .- di-
mensional manifolds through +the point of contact of such a tangent space can be des=-
cribed by the simpleYm - vectors , which are outer products of m covariant vectors

b ) Jm) LEQE"I’/R—@/
UM Aeee AU o The components of the simple¥m - vectors are the antisymmetrical co-

B yeeyB - by 5ee,5D
variant tensors of order m Sal am U(l)...U,gm) with 8 al am defined as oSS
st By n 1250 m,

; taiy MIRGGoE ot ©
- R b 2 2 b > :
( m!) L 8 bl e s ,l = by means of the Ricei gsymbols. The li-

sim. 3 8al,o.,am’cl,oo’cm

\covariant)
near operator D of the self- duality transforms a simpleY m- vector into another sim-

(covariant ) :
ple - vector. Let us now- introduce [EHENNEM a set of basic orthonormed covariant

vectors , in order that g, =-e, Sab with e = 1 or -1. Now equation (26 a)

has the simple form (for p =n

. Fe
*U = \"P e 20aC U (m! ) . = (260)
ety e Sml Som  Fme12*2%m Pt 6:3.1, LPL L

The flat manifolds of meximal dimensionality m lying on the isotropic or null
cone of equation g, ) b RPN ( in cartesian coordinates X ) are described by the

jcovariant linearl :
simple Y m- vectors obtained as outer products of m null| independent covariant vectors .

simple m-vector which is
Ihe U, o of those flat m - manifolds are eigenvectors of D and any V eigenvector of
l’ Y m -

D __describes such a manifold. The two eigenvalues of D correspond to the two families

flat m- dimensional manifolds on the null cone. We may ssy that the self-duality leaves

invariant the flat m~ manifolds on the aull: cone.



-~
B

. (12)
The antisymmetric covariant temsor U describes a simple covariant p-vector

ys ey
: 01 e, linearly independent )
when it is the outer product U( )/\ soe /\,U(p ) of %‘V’cov:a.riant vectors It describes the

(n-p) - dimemsiomal flat mamifold of the tangent space through the point of contact ob-

: : ; - (covariant)
taimed Dby the intersection of the p hyperplanes deseribed by the Yvectors U(J'Z..,U(p ).

The metric temsor allows to associate a contravariamt vector V- = gab U

= b to the co-
; o (p linearly independent) > 1) -
variant vector U . The Vcontravariant vectors V ,..,V(p) determine a

p=dimensional

flat manifold through the point of contact of the tangent space, which is described

by the antisymmetric covariant tensor *U o *U is therefore a
a‘p.’_.l”"an ; : a'p+l,oo,an =%
simple covarisnt (n-p)- vector the outer product of n-p covariant vectors describ-
: : . 201 = =(p)
ing n-p hyperplanes having the p-dimensional flat manifold of the V' /,.,,V P ag_their

intersection. The temsor duality transforms therefore simple covariant p-vectors into
simple covariant (n-p)-vectors. In the case of the self-duality of the 2m - dimensio-
nal spaces , the simple covariant m- vectors are transformed into simple covariant
m=vectorse

Let us denote by "5(p+ l),.., g(n) n-p linearly independent covariant vectors

whose outer product gives the above simple covariant (n-p)-vector 0 25a
p+l "0 n

byperplene corresponding to any of those 'E(r) contains the points of coordinates V(s)a

o The

so that Uér) V(s)a, = 0 . Hemce we have gé}? Uis) U.E)r) = 0 with 8 =1,ee,p and r =

> =
=p+ 1 yeestt ¢ The v ana 78 are also orthogonal y(rla y(=)b _ o | mhe

ga.b

ensor duality transforms therefore a p-dimensional flat_manifold into a (n-p) - dimensi-

onal flat manifold whose contravariant vectors are orthogomal: to a1l those of the for-

mer memifold. « Let us comsider now a flat m-dimensional manifold on the null cone
g, % X” =0inthecase of m = 2m Now any comtravariemb vector of the manifold is
orthogomal to itself and to all the others of the menifold.Moreover — any contravariant

Lalso )
vector orthogomal to all those of the manifold must Y belong to the manifold , which is

therefore invariant for the  temsor duality. Ih imple covariant m - vectors Ua on

eey8
the n one 12°°2%,
e eigenvectors of D . Any eigenvector Ua‘ . of D which is a simple m- vector des-
- l"', m
2(r)

cribes a m- dimensional flat manifold of the null cone ) because it contains the V( s &

gset of p linearly imdependent contravariant vectors orthogomal to all those Of the manifiold.
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In the above description of the flat manifolds of +the tangent space by anti-

symmetric covariant temsors the componemts of the temsors are homogeneous grassmannian
coordinates im the star of the flat manifolds through the point of contact. The linear
1duality,
transformations of +the components of U into those of *U are induced

ATy ap+1!f"8‘n

by the polarity with respect to the null come of the centre il the star of flat ma-

nifoldss whose center is the point of contact,e That polarity leaves invariant the null

come as a system of its flat manifolds of maximal dimension m , in the case of

The polarity with respect to the light-cone in the <tangent space at a point P

as_an immer transformation of the light-cone taken as a system of two-dimensional
[ Se
F
§6

The polarity with respect to a come is a projective transformation of +the star

b

_ v
menifolds is desecribed by the equation €F14 =fg 3 not involving the_~§? ~

of flat manifolds through the vertex of the cones It is the basic transformation underly=-
ing the cayleyan projective construction of the metriec geometry of the star 4 which is
the angular metric.

The tensor calculus is related to the affine geometry of the centred affine
tangent spacess in which a simple covariant p - vector describes a flat manifold of di-
mensionality = - p endowed with an outer orientation , passing through +the point of contact

VV

mensional flat menifold ,whem it is a simple covariant bivector of the space-time.

The flat manifolds on the cone b b o Xb = 0 play an important part in the
geometrical theory of the gpinors of the orthogonal group of the quadratic form gaﬁxgxb,
as well Xnowa . The role of the flat manifolds of maximal dimensionality m is particul-
arly remarkable. For evem n = 2m there are two families of such flat manifolds. For odd
n=2m+ 1, there ié only one such family . This corresponds to the fact that there are
no semi- spinmors for odd mn and two kinds of semi-spinors for evemn n 4 as a comsequence

of the association of the flatim =-8imensional manifolds on the null cone to spinmors for

odd n and to senmi- spinors for evem n ,1n the cése of even n the existence of two

kinds of semi - spinmorg igs related to the two eigenvalues of the operat o



(14)
In this sectiom we have examined im a gemeral way the geometry of the tensor

duslity, without tryimg to emphasize the special circumstances characteristic of ‘the phy-
sically most dimportant case of mn =4 . This will be done in detail in +the <following
' main]y) (vector space of the)

sectiomse It will be seen that they are] related to the fact that the Yself- dual an-
tisymmetric covariant tensors of the second order is now also that of the Lie alge-
bras £ of +he infinitesimal transformations of the orthogonal groups of the four- di-
mensiomal flat spaces. We have already found in equation (24d) a remarkable consequence
of that fortuitous coincidence of two kinds of vector spaces for n =4 .

There are also some special consequences of the fact that the bilinear forn
( U(l) % U(z)) of the antisymmetric covariant tensors of order m is symmetric only for
m =4Lp , the simplest case being n =4 « For n =/ the equation (U,U) =0 is a ne-
cessary and sufficient condition for U yto be a simple bivector. This leads to the iso-

real (A bthe
morphism of SL(4,R) and the| orthogonal group 0(3’,3)0Mua,dra'bic form (U, U) and gives
rojective

special properties to theY geometry of the star of flat manifolds associate to each
point of the four-dimensional differentiable manifolds, which are similar %o those of the

projective line geometry in three dimensions.



