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Summary

The particle dynamics in the world-manifold is taken as the foundation of the
world-geometry, in a Hamiltonian formalism with a scalar mass Hamiltonian, not
involving the value of the mass. The Riemannian metric is obtained from the linear
relation between the covariant and contravariant vectors of the mechanical momen-
tum of a particle involved in the formalism.

The basic differential equations for the world-lines of the particles allow to
define a new kind of parameter called the duration, with the same dimension as
the Einstein gravitational constant. The proper-time parameter is defined in terms
of the duration and the mass Hamiltonian, before the introduction of the Riemannian
metric.

The metric tensor g(x) comes in as a mechanical field related to the inertial
properties of the particles, which determines the mass Hamiltonian of the free
particles. The symmetry of g(#) is a consequence of the mass Hamiltonian formalism.

Our classical Hamiltonian formalism is naturally related to the wave equations
of the relativistic quantum mechanics, and leads to a generalization of those wave
equations.

1. Proper-Time and Duration

In General Relativity the problem of time appears in a far more
complicated way than in Special Relativity, because of the impossibility
of identifying the time with one of the four coordinates »* of a Riemannian
space-time, without introducing strong restrictions on its topology, which
do not seem quite justified. As a matter of fact, the clock-time of an
observer is given by its proper time s, which is not one of the coordinates
of the space-time, but a scalar quantity obtained from the ds® of the
normal hyperbolic Riemannian metric.

* Dedicated to Professor Guipo BEck on the occasion of his 70th birthday.
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Thus the problem of time is related to the scalar parametrization of the
world-lines of the particles. The interval s cannot be used as a parameter
on world-lines with ds* = 0 and it becomes imaginary on those with ds® < 0.

The proper time is defined in a purely kinematical way. In order to
obtain a deeper analysis of the parametrization of the world-lines of the
particles, it is necessary to make use of their dynamics, in particular of
their mass properties.

The Hamiltonian form of the particle dynamics appears as the most
adequate for the discussion of the problem of time, both in the non-
relativistic and the relativistic dynamics, because they are differential
equations of the first order. We shall use a new type of relativistic
Hamiltonian formalism, symmetrical with respect to the four coor-
dinates x* of a particle and thereby also symmetrical with respect to
their conjugate momenta p,, for the analysis of the problem of time.

The symmetry of the Hamiltonian formalism with respect to the coor-
dinates x* is essential in General Relativity, since it does not allow a
preferential status to be given a priori to one of the coordinates, in the
analysis of time. This leads to the introduction of a scalar Hamiltonian
function related to the mass, instead of the energy Hamiltonians of the
non-relativistic theory and of Special Relativity.

Thus our analysts of time leads to a new approach to the concept of the
mass of a particle, in terms of the scalar Hamiltonian K(p, x), of the
particles with the charge e.

Its nature of Hamiltonian function renders K(p, x), a constant of the
motion of the particles, because it does not involve any other variable
of the particle, besides the four canonical pairs p,, ¥*. The situation is
now analogous to that of the motion of the particles in a time-independ-
ent field of forces in the non-relativistic Hamiltonian dynamics, which
admits the energy Hamiltonian as a constant of the motion.

The constant value of K(p, x), on a world-line of a particle gives its
mass m by means of the equation

m? = 2K(p, x), with ¢ =1, (1)

corresponding to the non-relativistic equation which gives the energy E
of a particle moving on a trajectory, in terms of the value of its Hamilto-
nian H(p, x) for that motion

E = H(p, x). (2)

In the non-relativistic dynamics, the mass of a particle appears as a
primary concept, and the energy as a quantity defined in terms of the
mass and the three-momentum, by means of the function . Our ap-
proach to the concept of mass in Relativity inverts that situation: the
vector p, is now a primary concept, and the mass a quantity defined in
terms of the energy and the three-momentum, described by the wvector p,,
by means of the function K(p, x),.

We shall use as basic equations of motion of a particle the pre-
Hamiltonian system
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AWO[PO = -+ = dx3P3 = — dpy|Xg =+ = — dps/ X3, (3)
with the P* and X, denoting partial derivatives of K(p, %),
Pt =0, K(p,x), and X, = 0., K(p, x)e- (4)

The system (3) is covariant, although the dp, are not vector components,
because the X, are also not the components of a vector.
K(p, %), is a constant of the motion of the particles

dK(/)» x)e =0 (5)

because of the general equation of variation of the physical quantities
G(p, x) of a particle with charge e resulting from (3)

dG(p, x) = (G(p, x), K(p, x).) dz., (6)
dz, denoting the common value of the eight ratios in the differential
system (3)

dz, = dx*|P* = — dp,|X, (7)
and (B(p, x), C(p, x)) the four-dimensional Poisson bracket of the func-
tions B(p, x) and C(p, x) ;

(B(p, %), C(p, 3)) = 3,,B 8,,C — 8, B 9,,C. ®)

ah

The real scalar parameter z, defined by (7) will be called the duration
parameter for the particles with charge e. The introduction of z, allows to
go over from the pre-Hamiltonian system (3) to the four-dimensional
Hamilton equations

dx* = 0, K(p, %), dz, and dp, = — 0, K (P, %), dz,. 9)
We have a four-dimensional infinitesimal contact transformation
pu = byt dpy, ¥ > dxt, (10)
defined by the motion of the particles with charge ¢, because
(Pu + dpy) O(x* + dx*) — p, 0x* = d(py 05"), (11)
and d(p, 0x*) is the o differential of a function
d(py 3%) = S((Pp, — K(p, 2)) dzo), 02 =0 (12)

and the vector p, at x can vary without restrictions.
Thus we get the Theorem 1:

TueoreM 1. The motions of the particles with charge ¢, given by
the differential system (3), generate a one-parameter group of non-
homogeneous contact transformations of the world-manifold, with the
parameter z,.

We shall now see that the definition (7) of the duration parameter z,
is analogous to that of the Newtonian time ¢, given by the motion of a
mechanical system with a Hamiltonian function H(p, g) depending only
on the Lagrangian coordinates ¢, and their conjugate momenta p,,
with n degrees of freedom, in the non-relativistic mechanics. 7hose me-
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chanical systems are good clocks because their equations of motion can be
written as pre-Hamiltonian systems not involving the Newtonian time t

Agy|Py = -+ = dgu|Py = — dpy[Qy = -+ = — dp,[Q,,  (13)
with
P, = aer(/): g) and Qr ins aqu(]'), q)' (14)
We can define df as the common value of the 2 ratios in the system
(13), because this leads to the correct Hamilton equations

dg, = P.dt and dp, = — (Q,dt. (15)

The system (13) gives 2n — 1 differential equations for the g¢,,..., g,
and py,.. ., p,, with ¢; taken as the independent variable. Their general
solution gives the above 2# — 1 variables as functions of ¢; and arbitrary
constants Cy,. .., Cy,_4. Thus P;(p, g) becomes a function P(g;, C) and
we have the differential equation for ¢

dt = dq1/P(q1, C). (16)
Finally we get
(_]x
t= / dy[P(y, C), (17)
7

¢,° denoting the value of ¢, corresponding to ¢ = 0.
The system (13) has the energy H(p, ¢) as a constant of the motion,
corresponding to the constant of the motion K(p, x), of the system (3).
The above discussion shows that z, is the natural parameter on the
world-lines of the particles with charge e. It does not have the dimension
of a time. We have the Theorems 2 and 3:

THrorEM 2. When the velocity of light ¢ is taken as 1, z, has the
dimension of the Einstein gravitational constant «. Thus General Rel-
ativity involves a natural unit of duration «, and allows the existence
of a dimensionless parameter z,/x on the world-lines of the particles with
charge e.

THEOREM 3. When ¢ = 1, z, has the dimension of (e/m)2

We shall now introduce a definition of the infinitesimal proper-time
ds, on the world-lines of the particles with charge e, in terms of dz, and
the square root of 2K(p, x),:

DeriNITION.  The infinitesimal proper-time ds, corresponding to the
infinitesimal displacement dx* on the world-lines of the particles with
charge e is taken as

ds, = (2K(p, x),)V* dz,, (18)

the sign of the square root being such that it be equal to the mass .
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We have the Theorem 4:

THEOREM 4. The definition of ds, does not require the introduction
of a Riemannian metric in the world-manifold. ds, is real and nonzero
for dx* # 0 on the world-lines of the particles with nonzero real mass.
ds, = 0 for any dx* on the world-lines of particles with mass zero. ds, is
imaginary on the world-lines of the particles with m? < 0, for dx* # 0.

la. We shall now discuss the gauge transformations of the p, in-
duced by those of the electromagnetic potentials 4 ,(x)

A, (%) = A,(x) + 0,,(), (1)
¢(x) denoting an arbitrary differentiable scalar field. We have
Pu = Pu+ e 0,p(x) with ¢=1. (2)
It follows from (1) and (2) that the P,
P,=p,—eAd,(x) with ¢c=1 3)

are gauge invariant.

The P, will be called the components of the covariant mechanical
momentum, and the P* of the system (1-2) the components of the
contravariant mechanical momentum. I¢ follows from the system (1-7)
that at any point x of a world-line of a particle the vector P* is tangent to
the world-line

P = dx*[dz,. (4)

The Hamiltonian K(p, x), must be gauge invariant, in order that the

mass of a particle be independent of the choice of the potentials A ,(x)
for a given electromagnetic field. Thus we get the Theorem 5:

THEOREM 5. K(p, x), is a function of the »* and the P, as a con-
sequence of its gauge invariance.

We shall postulate now that e comes in in K(p, x), only as a constant
of interaction with the electromagnetic field, through the vector ed (x). This
assumption will be called the Charge Postulate. We have the Theorem 6:

TrEOREM 6. It follows from the Charge Postulate that there is a
function N(y, ) of the covariant vector y, and the x*, not involving e,
such that

K(p, x), = N(P, x). (5)
Hence the P* are partial derivatives of N(P, x)
Pt = 8, N(P, %). (6)

TueorEM 7. It follows from Eq. (6) that the components P* of the
contravariant mechanical momentum are gauge invariant. Since we get
from the system (1-7) that

dz, = P, dx"|P, P, (7)

the duration parameter z, and the proper time s, are also gauge invariant.
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We get from the Eq. (5), for ¢ = 0, the Theorem 8:

TueoreEM 8. The fundamental function N(y, x) is given by the
Hamiltonian K(p, x), of the free neutral particles K(p, x),

N(y, x) = K(y, x)o. (8)

Thereby N(y, x) is determined by the inertial properties of the neutral
particles. It is the basic inertial function.

We have also the Theorem 9:

TuEOREM 9. The Hamiltonian of the free charged particles can also
be taken as K(p, x)o, by choosing the potentials 4,(x) = 0 when the
electromagnetic field F,,(x) = 0 everywhere on the world-manifold.

1b. Letusintroduce now the symmetric contravariant tensor g**( P, x)
g, x) = O,p,N(P, x).

We shall assume that the determinant of the g (p, x) 1s # 0 for all
the x and P,, in order to be able to solve the Eqs. (1a~6) with respect to the P,.

The existence theorem for the solutions of the systems of ordinary
differential equations applied to (1-3) shows that there is one and only
one motion of a particle of charge ¢ with a given p, at a point x of its
world-line, when suitable conditions are satisfied by N(P, x). We have
the Theorem 10:

TaEOREM 10.  When the P, can be expressed in terms of the P* and
", there is one and only one motion of a particle with charge ¢ for a
given dx*[dz, vector at a point x of its world-line, when the conditions
for the applicability of the existence theorem to the system (1-3) are
satisfied by N(P, x).

We have the Theorem 11:

TaeorEM 11. When the P, can be expressed in terms of the P”
and «”, the Hamilton equations (1-9) can be obtained from the Lagrange
equations with the Lagrangian function L(x, %),

L(x, ), = pa* — K(p, ), with i = dx*/dz,, (1)
given by the relativistic Hamilton Principle

(5/ L(x, %), dz, = 0, (2)
with dx* = 0 at the limits of integration. The p, are now obtained in
the usual way from the Lagrangian

Pu = a,l'-u]‘('\‘» \)r (3)
We have the Theorem 12:

TueoreEM 12. The Lagrange equations
f)lt = a;“,‘L(.\', \)1 (4)
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with the p, given by (3), are differential equations for the world-lines
of the particles with charge ¢, parametrized by z,. From a solution
¥ = f(z,, x(0), £(0)) we get the solutions x* = f(s,/m, x(0), mx"(0)) for all
the values of m # 0, with x#(s) denoting the component dx*/ds, of the
velocity.

When the dx* are not taken as zero at the limits z;, z, of the integral

of the Lagrangian in the variational principle, we get, instead of (2), the
important equation

pZ:u (3,\7._3“ - Pl;uu (leu = / L(-V: %){. d:r- (5)
Hence the integral is an ordinary function of the points x; and x, and
the values z;, z, of the duration parameter, when taken along the world-
line passing through xy, x5 at z;, 25

/ L(x, %), dz, = S(x9, 25 %1, %1) e (6)
S is the Hamilton f)rindpal function of the Hamilton system (1-9). It
follows from Eq. (5) that
Priw = (— 1) 04,uS (%2, 225 %1, 29), for r=1,2. (7)
We get from (6) that the differential 0S with 0z, # 0 is
0S(¥g, 295 X1, 21), = Po.u O%s" — K(po, ¥2), 022
— P 021" + K(p1, %1). 021 (8)
From (8) and (7) we get the Theorem 13:
TrEOREM 13. The function S(x, z; xo, 2), satisfies with respect to

the variables «*, z the Hamilton-Jacobi equation associated to the
Hamilton equations (1-9)

V., + KV, %), = 0. 9)
The application to Eq. (9) of the Jacobi theorem for the partial
differential equations of the first order gives the Theorem 14:

TueoreMm 14. The general solution of the Hamilton system (1-9)
can be obtained by means of a solution V(x, z; a) of Eq. (9) depending
on four arbitrary parameters ¢, and with a nonzero determinant of the

second order derivatives ai,,avV(x, z; a), by means of the equations
pu=0,V(x 2z,a) and b, = — 9 ,V(x,z; a), (10)
the b, being four arbitrary constants.
It is important to note that the Theorem 14, as the association of the
Hamilton-Jacobi equation (9) to the Hamilton system (1-9) do not

depend on the possibility of expressing the P, in terms of the P* and x*
by means of the equations P* = 9, N(P, x).
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le. We obtained the Hamilton-Jacobi equation (1b-9) from the
Hamilton equations (1-9) by means of the Lagrangian formalism of
Sec. 1b. It is well known from the Hamiltonian theory of the non-
relativistic dynamics that the Hamilton-Jacobi equation can be in-
troduced by means of the theory of the contact transformations of the
Hamilton equations. We shall now see that the same happens also
with the Eqgs. (1-9) and (1b-9).

Let us consider the bilinear covariant wy(d, ) of the linear differential
form w(d)

o(d) = p, ' — K(p, ), dz, (1)

wsy(d, 0) = dw(d) — dw(9). (2)

It is easily seen that the Hamilton equations (1-9) are equivalent to the

equation

wy(d, 0) = 0 for arbitrary 6p, and Ox*. (3)

We shall now introduce the contact transformation defined by a

differentiable function V(x, x’; z,) with a nonzero determinant of the
second order derivatives a%.,» V (¥, x'; z,)

b ax" — pydx* = dV(x, x'; z,) — 8, V(x, &'; z,) dz,. 4)
It follows from (4) that with
K'(p, ', 2,0 = K(p, %)o + 0,V (x, &'; 2,) (5)
and
w'(d) = p, dx'* — K'(p', ' 2,), (6)
we have
o(d) — w'(d) = —dV, (7)
so that
wsy(d, 0) = wy'(d, o). (8)

From (8) and (3) we get the Theorem 15:

THEOREM 15. The contact transformation (4) gives the Hamilton
equations with the Hamiltonian K'(p’, ', z,), and the same duration
parameter z, for the new variables p,” and x4, as a consequence of those
with the Hamiltonian K(p, ), for the p,, x*.

The Eq. (4) gives the system
D= = aa;uV(x’ %' Zc): j)v' = ax’vI/(x’ x5 ze)‘ (9)
The first group of Eqgs. (9) can be solved for the & in terms of the
Pu, ¥*, z,. The second group gives then the p,’. In order to get the p,, x*
in terms of the p,’, ¥ and z,, we must start by the solution of the second

group (9) with respect to the x*.
When V(x, «’; z,) satisfies the Hamilton-Jacobi equation with respect

to the #* and z,

V., + K(V,, %), = 0, (10)
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we get from Eq. (5)
K(p' o, 20)e = 0. (11)

Hence the new variables p,’ and x"* are constants of the motion and
V(x, x'; z,) is a solution of the Hamilton-Jacobi equation (1b-9) de- .
pending on 4 arbitrary constants x’*, with a nonzero determinant of the
second order derivatives a-u,» V (¥, ¥'; z,). Thus we get the proof of the
Theorem 14, by means of the Egs. (9), expressing the p, and x* in terms of
the 8 constants of the motion p,’, ¥’V and z,.

1d. The relativistic Hamiltonian theory of this paper leads to the
introduction of an eight-dimensional relativistic phase space Sg(e) for the
particles with the charge e, with the coordinates p,, ¥*. We have the
Theorem 16:

Tureorem 16. The eight-dimensional phase space Sg(e) for the par-
ticles with charge ¢ is a differentiable manifold endowed with the
Hamiltonian structure defined by the invariant antisymmetric bilinear
form 0p, dx* — dp, ox* of its two infinitesimal contravariant vectors
(dp,, dx*) and (dp,, Ox*), which is the bilinear covariant of the linear
differential form p, dx*. The antisymmetric bilinear differential form is
invariant for the contact transformations

P, dx* — p,/ dx'* = exact differential. (1)
We have the Theorems 17 and 18:

TueorEM 17. It follows from the Theorem 15 that K(p, x), behaves
as a scalar for the contact transformations (1) of Sg(e)

K'(p', %) = K(p, %)., (2)
K(p, %), defines a scalar field in the Hamiltonian geometry of Sg(e).
The pre-Hamiltonian differential system (1-3) defines the lines of Sg(e)
tangent at all their points to the contravariant eight-dimensional vector
— X, P* obtained from the gradient P*, X, of K(p, x), by means of
the invariant bilinear antisymmetric form of the Hamiltonian structure
of Sg(e).

Tureorem 18. The Poisson bracket (B(p, x), C(p, x)) of two scalar
fields of the Hamiltonian geometry of Sg(e), defined by the Eq. (1-8)
is the skew inner product of the gradient vectors of B(p, x) and C(p, x)
associated to the invariant bilinear antisymmetric form dp, dx* — dp, ox*.

We have also the Theorem 19:

Tueorem 19.  The gauge transformation (1a-2) of the p, is a special
contact transformation

pudxt — p, dx'" = — e d(x) (3)

leaving invariant the x*.

The Hamiltonian geometry of Sg(e) has a natural Liouville measure
of the oriented hypervolumes, because the functional determinant
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D(p’, x')|D(p, x) = 1 for the contact transformations (1), as well known
from a general theorem of the theory of the contact transformations.
Thus we get the Theorem 20:

TueorEM 20. The outer product of eight infinitesimal vectors
(d,p,, d.x*) is invariant for the contact transformations (1). It defines
the oriented infinitesimal hypervolume of Sg(e) built with them.

The above discussion shows clearly that our particle approach to General
Relativity is naturally associated to a more primary type of geometry of the
world-manifold than the Einstein normal hyperbolic Riemannian geometry.

2. The Hamilton-Jacobi Approach to the Mass Formalism

In the preceding sections we developed the mass formalism of the
particle dynamics starting from the pre-Hamiltonian differential sys-
tem (1-3), involving the partial derivatives P* and X, of the mass
Hamiltonian K(p, x),, and finally arrived to the Hamilton- Jacobi partial
differential equation of the first order (1b-9) involving only the func-
tion K(V,, x),. The Eq. (1b-9) admits solutions of the form

Vi (x, z,) = — dm?z, + U(x, m) (1)
with U(x, m) satisfying a partial differential equation with a formal
structure similar to that of the fundamental Eq. (1-1)

2K(U,, x) = m> 2)
The Eq. (2) is indeed obtained from (I1-1) by the substitution of p,
by U,

The partial differential Eq. (2) will be called the ordinary Hamilton-
Jacobi equation for the particles with charge ¢ and mass m in General
Relativity. Tt gets the usual form

g W)U — edu(@)(Uyy — ed,(v) = m? (3)

when the function N (P, x) of Eq. (la ") is taken as follows
2N(P, x) = g**(x)P,P,. (4)
We shall introduce (4) in Sec. 4, after the clarification of the mechanical

signification of the tensor g"¥(x ). In the present section we shall discuss
the relation between the Eq. (2) and the pre-Hamiltonian differential

system (1-3).

It is well known from the theory of the partial differential equations
of the first order that there is the Cauchy system of ordinary differential
equations for the characteristic lines associated to such an equation. In
the case of the Eq. (2) the Cauchy system is

AP0 = - -+ = dx3|P3 = — dpy|Xy =+ = —dps/X3 =dU[P*p, ()
together with the condition

2K(p, x), = m?. (6)

Acta Phys. Austr. 38/2 12
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The differential system (5) can be replaced by (1-3) and the equation
aU = p, dx*. (7)
Hence we have the Theorem 21:

TuEOREM 21. The solutions of the Cauchy system (5)—(6) of the
ordinary Hamilton-Jacobi equation (2) are obtained from those of the
pre-Hamiltonian system (1-3) corresponding to the value m? of the
constant of the motion 2K (p, x), with the U given by (7)

x

U=U,+ / Py dx, (8)

the integration being along the world-line of a particle with charge e
and mass m given by the system (1-3).

The Theorem 21 shows that the pre-Hamiltonian system (1-3) comes in
naturally even in the theory of the motions of the particles with given ¢ and m,
in conmection with the ordinary relativistic Hamilton- Jacobi equation (2).

The Cauchy differential system shows that a ninth variable U comes
also in naturally in the dynamics of a particle with charge ¢ and mass m,
in connection with the Hamilton-Jacobi equation (2). This point will be
clarified in the following Sec. 2a.

The ordinary relativistic Hamilton-Jacobi equation (2) is closely re-
lated to the Klein-Gordon wave equation for the particles with charge ¢
and mass m in General Relativity

2K (Pops X)aih(x) = mZp(x), 9)
() denoting the complex wave function for a particle with spin 0, and
the p,,., being the linear operators for the components of the momentum
of the particle.
We have the Theorem 22:

THEOREM 22. In the relativistic quantum mechanics there are
square mass operators related to the square mass functions 2K(p, x),
of the classical theory, involving the operators for the four components
of the momentum of a particle. Such a square mass operator is well
known in the case of the motion of free particles in Special Relativity,
where it is related to one of the Casimir operators of the Poincaré group.

2a. The Cauchy system (2-5)—(2-6) can be split into the pre-
Hamiltonian system (1-3) and that of the Eqs. (2-7)—(2-6), a Pfaffian
system. The Pfaff equation (2-7) has four-dimensional integral manifolds
defined by arbitrary differentiable functions U(x) of the x*
U=U), p,=2,U(). (1)
The condition (2-6) requires U(x) to be a solution of (2-2), in order to give
a four-dimensional integral manifold of the system (2-7)—(2-6). Thus we
get the Theorem 23:
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TrEOREM 23. The Pfaffian system (2-7)—(2-6) gives a generaliza-
tion of the ordinary relativistic Hamilton-Jacobi equation (2-2), which
gives its four-dimensional integral manifolds of the type (1), because it
admits also integral manifolds with dimensionality less than 4.

We have the Theorem 24 :

Tueorem 24, The Cauchy system (2-5)—(2-6) defines one-dimen-
sional integral manifolds of the Pfaffian system (2-7)—(2-6), associated
to the world-lines of the particles with charge e and mass m. They are
also one-dimensional integral manifolds of the Pfaffian system

AP0 = - -+ = dx3|P3 = dU|[p,P*, 2K(p, x), = m?, (2)
whose integral manifolds belong also to the less restrictive system
(2-7)—(2-6).

We have the Theorem 25:

TueoreM 25. The definition of the duration parameter z, given by
the Eq. (1a-7) can be extended to any one-dimensional integral manifold
of the Pfaffian system (2) and we get

AU = P*p, dz,. (3)

We can now extend the definition (1-18) of the proper time param-

eter s, in terms of z, to any one-dimensional integral manifold of the
Pfaffian system (2) by taking
ds, = (J2K(p, »)./P,P*)P, dx*. (4)
Let us consider now a world-line defined by real differentiable func-
tions x*(y) of a real parameter y. We define z,(y) on the world-line as
an arbitrary differentiable function f(y) with df/dy # 0. Thus we can
take P*(y) = dx*(y)/df(y) and determine the p,(y) by the equations
P(y) = 9, K(p, x(v)) and U(y) by the equation

Uly) — U(0) = j Puly) dxt(y).

When it is possible to choose the function z,(y) such that 2K (p(v), x(y)), = m?>
for all the values of y, we get a one-dimensional integral manifold of the
Pfaffian system (2) associated to the given world-line, which may not be a
world-line of a particle of charge e and mass m moving in the electromagnetic
field of potentials A ,(x) involved in K(p, x),.

2b. At the present level of the theory of the mass formalism of the
relativistic dynamics of a particle, there is the scalar P, P* built with
the components of the covariant and contravariant vectors of the me-
chanical momentum, but not identified to the square of the mass m of
the particle, which is given by 2K(p, x),, as a consequence of the Fun-
damental Postulate expressed by the Eq. (1-1). We shall now introduce

the new postulate
2K(;b’ x)e = PuPu' (1)

12*
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It follows from (1) and the Eq. (la-6) that the function N(P, x)
satisfies the Euler equation for the homogeneous functions of degree 2
of the P,

P, op N(P,x) = 2N(P, x). (2)

We have the Theorem 26:
THEOREM 26. The postulate of identification of P,P* and the square
mass function 2K(p, ), renders N(P, x) a homogeneous function of
degree 2 of the P,. The P* are now homogeneous functions of degree 1

of the P,. K(p, x), becomes a homogeneous function of degree 2 of ¢ and
the four components 2,,.

It follows from the definition (1a-3) of P, that

Ptp, = P*P, + ed,(x)P* (3)
so that by taking into account (1) we get
Prp, = 2K(p, x), + ed, (x)P". 4)

Thus we get the Theorem 27:

THEOREM 27. On the one-dimensional integral manifolds of the
Pfaffian system (2a—2) we have

AU = mds, + ed ,(x) dx*, (5)

so that the variation of U from x,; to x, is given by the integral of the
relativistic Lagrangian for a particle of charge ¢ and mass m along the
corresponding interval of the world-line

Xa

UR) —UuQl) = / (m + ed , (x)v*) ds,, (6)

v* denoting the velocity vector with respect to the proper-time param-
eter.

We have the Theorem 28:

THEOREM 28. It follows from the Theorem 27 that the one-dimen-
sional integral manifolds of the Pfaffian system (2a-2) associated to
arbitrary world-lines by the procedure of Sec. 2a are related to the
Feynman path approach to the quantum mechanics, when 2 is real and
nonzero,. because of the relation between the variation of U and the
integral of the Lagrangian.

2¢. We shall now introduce the Pfaff equation

aV = p, dx* — K(p, x), dz, (1)

associated to the Hamilton- Jacobi equation (1b-9) for the particles with
the charge e and all the values of the mass 7. We have the Theorem 29:
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THEOREM 29.  Any solution V(x, z,) of (1b-9) gives a five-dimensional
integral manifold of the Pfaff equation (1) defined by the equations
V =T(x, z,), P = 0,V (%, z,). (2)

The Pfaff equation (1) may be seen as a generalization of (1b-9), because
it admits also integral manifolds with dimensionality less than 5.

We have also the Theorem 30:
TuHeEOREM 30. The Cauchy differential system of (1b-9)
dzy = dx|P = -+ = —dpo|Xg =+ = —dpy| Xy =dV[(P*p, — K(p, x),)
(3)

defines one-dimensional integral manifolds of the Pfaff equation (1),
associated to the world-lines with a given value ¢ of the charge and all
the real values of m?2.

The integral manifolds of the Pfaffian system
dz, = dx°|P0 =+ -+« = dx3|P3 = dV[(P*p, — K(p, x),) (4)

have the same property with respect to the less restrictive Pfaff equa-
tion (I). The integral manifolds of the Cauchy system (3) are one-
dimensional integral manifolds of (4), but not all those integral mani-
folds of (4) can be obtained from the solutions of (3).

The Cauchy system (3) can be replaced by the Hamilton equations
(1-9) taken together with the Pfaff equation (1). The solution of the
differential system (3) can be obtained immediately from that of the
Hamilton equations (1-9), since the Pfaff equation (1) gives the variation
of 7 along the world-lines of the particles with charge ¢

-{)2

V(xg, ze,2) — VX1, 2,1) = / (Ppy — K(p, x).) dz,. (5)
:c,.l
It follows from (1b-1) that the quantity under the integral in (5)
is simply the Lagrangian L(x, #),. Thus we see that

Vi(xa, 20,2) — V%1, 2,1) = S(¥, 225 %1, 21), (6)

S denoting the Hamilton principal function of the system (1-9), defined
by the Eq. (1b-6).

The Pfaffian system (4) can be replaced by the first group of Hamilton
equations (1-9) taken together with the Pfaff equation (1).

2d. The mass formalism of the preceding sections deals with the
motions of particles with a given charge ¢ and all the possible values
of m2 It can be easily extended into a mass-charge formalism dealing
also with particles with different values of the charge e, by assuming the
existence of a new pair of conjugate variables » and p,, with p, giving
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the value of the electric charge ¢ and # not appearing in the new Hamilto-
nian function K(p, x), obtained from K(p, x), by the substitution of ¢
l))’ j)u
K(p, x) = K(p, %)p, (1)
K(p, x) is a function of the nine variables p,, p, and x*, not involving the
variable w. 1t follows from (1) that K(p, x), is simply the value of K(p, x)
for p, = e.
The Pfaff equation (2b-1) is now replaced by
AV = p,du + p, dx* — K(p, x) dz, (2)

with z playing now the role of a duration parameter. The analog of the
differential system (2b-3) for the Pfaff equation (2) is

dz = du|P* = AP0 = -+ = dx3|P3

= - dpu/U = — d]bo/‘Yo e — l{/);;/-"?;;
= dV[(P"py + P*p, — K(p, ) 3)
with
U= auli'(i),;\'), P“ — apl/;’(f): 5\7); ‘X_,u = azuK(p,x), pu - a],u[;f(/)’;\,).

(3a)

By taking only the equations of (3) not involving dV, we get the system

of Hamulton equations analogous to (1-9) for the mass-charge formalism.
Since K(p, x) does not contain #, we have U = 0 and the Hamilton
equation dp, = — U dz gives dp, = 0. Thus we get the Theorem 31:

TueoreM 31.  In the present mass-charge formalism there are two
constants of the motion K(p, x) and ,, whose values on a world-line of
a particle give 3m? and e, because the Hamiltonian function K(p, x) does
not involve the variables z and .

Since K(p, ) involves p, only through the p, — p,4,(x), we have

P = — A,(x)P>, (4)
so that

du = — A, (x) dx*. (5)
We have the Theorem 32:

TuEOREM 32. The variable # is not gauge invariant, as shown by (5).
The gauge transformation A4,(x) — A4,(x) + 9,,P(x) induces the trans-
formations

u—>u—>Px) and p, — pu, Pu = Py + Pu 0,P(x). (6)
The gauge transformation corresponds to a change of coordinates in the
five-dimensional differentiable manifold S; with the coordinates #, x*

x* — x* u —u — Q)(.\T) (7)

with the p,, p, transforming as the components of a covariant vector
of 55.
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We have also the Theorem 33:

TueorEM 33. It follows from (5) that — du can be identified to the
basic linear differential form of the electromagnetic theory A,(x) dx*,
which is not an exact differential when the electromagnetic field F,,(x) # 0.

The Theorem 32 shows in a very clear way the natural relation
between the relativistic dynamics of the charged particles and the
differential geometry of the five-dimensional manifold S;. In particular
it justifies the choice of p, as a fifth conjugate momentum, analogous to the
four p,.

The possibility of the introduction of the pair of canonically con-
jugate variables p, and # may be seen as a classical relativistic germ of
the theory of the isospin of the particles, p, being related to 7’5 and « to
an azimuthal angle in the 7', T, plane of the isospin space.

2¢. The Postulate of identification of P,P* and 2K(p, x), has im-
portant consequences for the mass-charge formalism, by rendering the
Hamiltonian K(p, x) a homogeneous function of degree 2 of p, and the p,.
We have the Theorem 34:

TuEOREM 34. The homogeneity of degree 2 of K(p, x) in the five
variables p, and p, renders the differential system (2d-3) invariant for
the one-parameter group of transformations

¥ —>x* and w—u; p, —>kp, and p, —kp, with k#0, (la)
V —kV and z —z/k. (1b)

The Pfaff equation (2d-2) is also invariant for the transformations of
the group (la)—(1b).

The transformations with & > 0 constitute a subgroup, and those
with £ < 0 are the products of the former ones by the special transforma-
tion of the group (la)—(1b) corresponding to 2 — 1.

We have the Theorem 35:

TaeoreM 35. The transformations (la)—(1b) leave invariant the
world-lines of the particles given by the solutions of (2d-3), as a con-
sequence of the first Eq. (1a), but the same world-line is associated to a
particle with mechanical momentum £P*, having the charge ke and the
square mass k*m? as a consequence of the second group of Egs. (1a)
and the homogeneity of degree 2 of K(p, x) in the variables p, and p,,
as well as the interpretation rule for p,

Pr — kP, e — ke, m* — k*m?. (2)

The second Eq. (1b) shows that the product e dz, is invariant for
the transformations (la—1b) on the same world-line, and thereby in-
dependent of the value of the charge of the particle. T/e value of ds,
on a world-line is invariant for the transformations (la)— (1b) with & > 0
and changes only its sign for those with k& < 0.
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We have also the Theorem 36:

THEOREM 36.  The transformation (1a)— (1b) corresponding tok = — 1
gives a classical form of the theorem of charge conjugation. It associates to
any motion of a particle with charge ¢ and mass . in an electromagnetic
field F,,(x) a motion in the same field of a particle with the same mass
m and the opposite charge — ¢ on the same world-line, with the reversal
of the mechanical momentum P*, as well as of the differentials dz, of
the duration and ds, of the proper-time.

The Theorems 34, 35 and 36 lead to the Theorem 37 for the pre-
Hamiltonian systems (1-3) corresponding to different values of the
charge of the particles:

TureoreM 37. (a) The differential system (1-3) for the particles with
charge ¢ is transformed into that corresponding to the charge ke with
k # 0 by the transformation

- A, Du — kP, (3)

as a consequence of the homogeneity of degree 2 of K(p, x), in the five
variables ¢ and p, resulting from the Postulate of identification of P, P*
and 2K(p, x),. The world-line for a particle with mass 7 and charge ¢,
corresponding to a solution of (1-3), becomes that given by a solution of
the differential system for the value ke, of the type (1-3), for a particle
with the square mass £%#n?, the mechanical momentum at the same point
in the latter motion being AP*. It follows from the definition (1-7)
of dz, that the corresponding dz;, at the same point of the world-line
is dz,/k. We get at the same point of the world-line for the two motions

dsy, = (|k|[R) ds,. (4)

(b) The transformation (3) with k = — 1 gives a motion of a particle
with mass m and charge — e associated to that of a particle with charge e
and mass m on the same world-line, with opposite mechanical momentum
vectors for the two particles at the same point of their common world-line.
Thus the kinetic energy of the particle with charge — e will be negative when
that of the corresponding particle with charge e is positive, on the same
world-line.

The part (b) of the Theorem 37 shows that the pre-Hamiltonian
system (1-3) admits also physically inacceptable solutions with negative
kinetic energies, as a consequence of the identification of P, P* and
2K(p, x),. They can however be reinterpreted as describing the motions
of antiparticles with charge — ¢ and positive kinetic energies, in the
same way as in the relativistic quantum mechanics, by using the cor-
responding solutions of the equations of type (1-3) with charge — e and
positive kinetic energies obtained from them by means of the transforma-
tion (3) with 2 = — 1. Thus we get a classical approach to the particle-
antiparticle duality velated to the reversal of the duration and the proper-
time, at a very primary level of the construction of geometry.
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3. The Mass/Charge Formalism

The pre-Hamiltonian system (1-3), involving the parameter ¢, is the
basis of the mass formalism dealing with the motions of all the particles
of charge ¢, for all the real values of the square mass m? of the particles.
The differential system (2c-3) of the mass-charge formalism does not
involve the parameter ¢ and deals with the motions of the particles with
any real values of m?* and e. Both the mass and the mass-charge formalisms
do not strictly requive the postulate of identification of P, P* and 2K (p, x)
although compatible with it.

We shall now derive from the mass-charge formalism and the postu-
late P,P* = 2K(p, x), a mass/charge formalism for the relativistic dy-
namics of a particle, not involving any parameter in the equations of
motion, which is applicable to all the charged particles, and very similar
to the mass formalism of Sec. 1. We have the Theorem 38:

er

TueoreM 38. We get from the differential system (2c-3) and the
Postulate P, P* = 2K(p, x), a pre-Hamiltonian system not involving any
parameter, with the Hamiltonian 7(g, x) and the variables ¢, and x*

A0 = - = AP = — dgo| Xy =+ = —dgs| Xy (1)

by taking
gu = pulpu and I(q x) = K(p,x)/p,* for p, #0, 2)
Q" = 9,1(¢g,x) and X, =29 1I(g, x). (3)

21(q, x) is a constant of the motion of the particles, whose value on
a world-line gives the ratio m?/e?

21(q, x) = m?[e 4)

FFor a particle with charge ¢ # 0, the square mass m? and the momentum
are

m* = 2¢%I(q, x) and p, = ¢q,. (5)

We shall call 27(g, x) the square mass/charge function, as a conse-
quence of the Eq. (4). We have the Theorem 39:

THEOREM 39. I(g, x) is a function of the coordinates x* and of the
gauge invariant vector of components g, — 4 ,(x).

We have also the Theorem 40:

TuEOREM 40. The natural parameter of the mass/charge formalism
for the world-lines of the particles is w, whose differential is the common
value of all the ratios in the differential system (1). Thus we get the
Hamilton equations of the mass/charge formalism

dx* = 9, I(q, x) dw and dg, = — 0,.1(g, ¥) dw. (6)
We have
dw = p, dz. (7)
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We have also the Theorem 41:

THeorEM 41. (a) By means of the Einstein gravitational constant «
we can obtain from w a parameter 7" with the dimension of a length
dT = dw||/x, (8)
T is a relativistic analog of the Newtonian absolute time for the motions
of the charged particles.
(b) The square mass/charge function has the dimension of «=1, which
is a natural unit for the physical quantity (m/e)?.
The Hamilton- Jacobi equation associated to the Hamilton system (6)

Yo+ I(Y,2) =0 9)

is the Hamilton-Jacobi equation of the mass/charge formalism. The
basic Pfaff equation of the mass/charge formalism is

dY = g, dx* — 1(g, x) dw. (19

The solutions Y (v, w) of the partial differential Eq. (9) define five-
dimensional integral manifolds of the Pfaff equation (10)

Y = Y(x, w), 9y = 9,Y(x, w). (11)
We have the Theorem 42:

THEOREM 42. The relativistic dynamics of the charged particles is
associated to the five-dimensional differentiable manifold Sy with the
coordinates w and x*, as a consequence of the Postulate of identification
of P,P* and 2K(p, x),, through the Hamilton-Jacobi equation (9) of the
mass/charge formalism.

The linear differential form ¢, dx* and its bilinear covariant dg, dx* —
dg, 0x* play a central role in the theory of the contact transformations
of the Hamilton equations (6) of the mass/charge formalism. We have
the Theorem 43:

TuEOREM 43. The mass/charge formalism leads to the introduction
of a relativistic eight-dimensional phase space Sg, a differentiable mani-
fold with the coordinates g,, x*, associated to the motions of the charged
particles. The antisymmetric bilinear differential form dg, dx* — dg, ox*
gives a natural structure of Hamiltonian manifold to Sy, leading to a
Liouville measure of the hypervolumes, with the dimension of e4.

It is interesting to note that the mass/charge formalism leads to a
single phase space Sg for particles with any nonzero values of the charge.
In the mass formalism there is a phase space S(¢)g for each given value
of e, because the gauge transformation (1a-2) of the p, depends on the
value of the charge ¢ of the particle. In the case of Sg the gauge trans-
formation of the g,

9w~ qu + awu@('\‘) for A,(x) - 4,(x) + amud)(;\’) (12)

does not require a family of phase spaces Sg, because it does not involve
a particular value of the electric charge.



Time and Mass in Relativity 187

3a.  We shall now make use of the Einstein gravitational constant «
in order to modify the mass/charge formalism. Let us introduce the new
variables 7, and X and the function J(r, x)

re=rkq, X=|kY and J(,x) = «l(q, x). (1)
1t follows from the definitions (1) that v, dx* and X are scalars with the
dimension of a length and J(r, x) a dimensionless scalar.

We get from the Eqgs. (3-6) the Hamilton system of the modified
mass/charge formalism, with the Hamiltonian J(r, x) and the param-
eter 7" defined by (3-8)

dx* =9, J(r,x)dT and dr, = —9_](r x)dT. (2)
We get from (3-10) the basic Pfaff equation of the modified mass/charge
formalism

dX = r,dx* — J(r, x)dT (3)
and from (3-9) its Hamilton- Jacobi equation
X, T)p + J(Xp x) = 0. (4)

The Einstein constant w« appears to be a basic classical link between the
mass, the charge and the length, allowing the identification of non-geometric
physical quantities to geometrical ones. As a matter of fact « comes in
in the Einstein theory in the identification of the energy-momentum
tensor 7, and the geometric Einstein tensor S,, leading to the Einstein
field equation of General Relativity

Syy = 8axT,, with S,, = R,, — 1g,R, (5)

R,, and R denoting the contracted Riemann-Christoffel tensors built
with the Riemannian metric of the world-manifold.

The dimension of w is defined by the condition that km be a length.
Thereby el/;c 1s also a length. Thus we get the length v, dx* from the charge
g, dx*. We have the Theorem 44:

THEOREM 44. In the modified mass/charge formalism, the basic
linear differential form 7, dx* has the dimension of a length and its
bilinear covariant or, dxv* — dr, 0x* too. The phase space Sy’ of that
formalism has an intrinsic Hamiltonian structure defined by the anti-
symmetric bilinear differential form ér, dx* — dr, dx*, giving a Liouville
measure of its hypervolumes with the dimension of the fourth power
of a length. The constant « allows a geometrization of the phase space
of the relativistic dynamics of the charged particles.

We have the Theorem 45:

TuEOREM 45. The Hamilton equations (2) give the infinitesimal
transformation of a one-parameter continuous group of non-homoge-
neous contact transformations of the world-manifold, with a parameter 7°
having the dimension of a length, as a consequence of the equation

d(r, 0x*) = O((R*r, — J(r, %)) dT) with R* =9 ](r, x). (6)
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This group is related to the motions of all the charged particles in a
given electromagnetic field, whereas that of the mass formalism defined
by the Hamilton equations (1-9) is associated only to the motions of the
particles with a given charge e.

The linear differential form dX — 7, dx* with the dimension of a
length is related to a five-dimensional manifold S; with coordinates
X and %, associated to the geometry of the world-manifold. We have
the Theorem 46:

THEOREM 46. The non-homogeneous contact transformation of the
world-manifold defined by the equation
dx* — 7, dx'™* = dW(x, &), (7)
with the condition that the determinant of the derivatives of the second
order 8%, W(x, x') be # 0, corresponds to the homogeneous contact
transformation of S5 defined by the Egs. (7) and

X — X' = Wx, &), 8)

Ty

which give
dX — 7, dx* = dX, —r, dx'" (9)
Thereby the group of non-homogeneous contact transformations of the

world-manifold associated to the mass/charge formalism becomes a
geometric group of Sj.

It is interesting to note that the introduction of X as a variable of
the charged particles is done in an automatic way by the Cauchy dif-
ferential system of the Hamilton-Jacobi equation (4)

AT = dx|R" =+ -+ = —dry|Xy =+ = dX|(R*r, — J(r,x)) (10)
with R* defined by the second Eq. (6) and
Xy = 8, Jr, %) (11)

Thus we get the Theorem 47:

THEOREM 47. The introduction of the new variable X for the
charged particles follows from the association of a one-dimensional inte-
gral manifold of the Pfaff equation (3) to each solution of the Hamilton
system (2), by means of the Cauchy differential system (10) of the
Hamilton- Jacobi equation (2) of the modified mass/charge formalism.

3b.  The modified mass/charge formalism for the charged particles
leads the introduction of a five-dimensional differentiable manifold S.

with the coordinates 7" and x*, instead of the S; of the Theorem 42.
We have the Theorem 48:

TuEOREM 48. The five-dimensional differentiable manifold S; be-
longs actually to the geometry of the world-manifold Sy, as a kind of
geometric extension, because the x* are the same as in S,, and the
variable 7" has the dimension of a length.
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The behaviour of 7" as an independent variable with respect to the
world-coordinates x* on the world-lines of the charged particles results
from the fact that

2] (r, x) dT? = ds?, (1)
the differential ds of the proper time being taken as
ds = (2K(p, x))V2 dz. 2)
We shall see in Sec. 4 that
ds® = g,,(x) dx* dx", (3)

with the adequate choice of K(p, x),, the g,,(x) being functions of the
coordinates x*. Thereby we have at the point x of a world-line

ke dT? = (e/m)%g,,(x) dx* dx”. 4)
Thus we get the Theorem 49:

THEOREM 49. Tor given &* and dx* the differential d7° depends on
the choice of the ratio ¢?/m? of the moving charged particle, for a given
electromagnetic field F,,(x) of the world-manifold, endowed with the
Riemannian metric g,,(¥) obtained from the particle dynamics.

4. The Dynamical Foundation of the Riemannian Metrie

We must now introduce a new Postulate for the determination of
the square mass function 2K(p, x), which will also give the dynamical
foundation of the Einstein equation (3b-3), and thereby of the Riemann-
ian metric of the world-manifold S;.

Our mass formalism of the particle dynamics is distinguished by
the existence of a covariant Hamiltonian mechanical momentum vector P,
and a contravariant Newtonian mechanical momentum vector P*, re-
lated by means of the function K(p, x),. Thereby the problem of the deter-
mination of K(p, x), ts basically connected to that of the relation between
P* and P,

We shall now introduce the Postulate A:

PosturaTe A. In all the motions of the particles through a point x
of Sy there is a one-one linear correspondence

Pt = g(x) Py, (1)
with the g""(x) not depending on the particular motion in consideration
but only on x. The nonzero determinant of the components of the

tensor g*”(x) is negative at all x. The g*¥(x) are everywhere continuous
and have continuous derivatives up to the third order.

We have the Theorem 50:
THEOREM 50. The Postulate A and the Eq. (1a-6) give

9p,N(P, x) = g"(x)P,, (2)
so that
g(x) = 3b,p, N(P, x), 3)
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The integrability of the system of partial differential Egs. (2) imposes the
symmelry of the tensor g"¥(x)
gx) = g™((x) (4)
not requived by the Postulate A.
We get from (2) and (4) the Theorem 51:
TrHEOREM 51. It follows from (2) and (4) that
2N(P, x) = g"'(x)P,P, + S(v) with S(x) an arbitrary scalar (5)
the tensor g*(x) being symmetric. On the other hand, it follows from (1)
and (4) that
P, Pt = gt (x)P,P,. 6)

(
The identification of P, P* and 2N (P, x) requires that the scalar field S(x)
be taken as zero. Thus N(P, x) becomes a quadratic form of the P,

2N(P, x) = g”(x)P,P, for S(x) = 0. (7)
We have the Theorem 52:

THEOREM 52. When the scalar field S(x) = 0 there is a mass/
charge formalism, as a consequence of the Postulate A and the sym-
metry condition (4), with

21(‘1, 1?) = guv(x)(qu - Au("))(Qv - A\(‘)) (8)

because
2K (p, x) = g (#)(pu — Pudu(0)(Py — Pud\(¥) + S(x) )
as a consequence of (5).
We have the Theorem 53:

TaeorEM 53. The Postulate A renders the vector space of the P,
at the point x of the world-manifold into a pseudo-euclidean vector
space with the indefinite metric quadratic form g*'(x)P,P,, the condi-
tion of symmetry (4) being imposed. Because of the four-dimensionality
of the world-manifold Sy, the negative sign of the determinant of the
g"¥(x) restricts the signature of g**(x)P,P, to be either — 2 or 2, the
kind of pseudo-euclidean geometry being essentially the same in both
cases, which are exchanged by the change of the sign of the quadratic
form.

When S(x) =0, g¥(x)P,P, defines the mass-metric of the P,, with
g (x)P, P, giving the value of m? for the particles having the mechanical
momentum P, at the point x of their world-lines.

We shall introduce the Postulate B:

PosturaTe B. The signature of the quadratic form g*'(x)P,P,
is — 2

PN
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We have the Theorem 54 :

Tueorem 54.  The indefiniteness of the quadratic form g**(x)P,P,
allows m? to take all the real values on the world-lines of the particles
with a given charge ¢, passing at any world-point x. The Postulate B
associates the negative values of m? to the tachyons.

We have

P, =g, (®)P" with g, (x)g"(x) = 0,". (10)
The tensor g,,(x) defines a pseudo-euclidean metric of the Minkowski type
wn the vector space of the contravariant vectors V* at the point x of the
world-manifold, as a consequence of the signature — 2 of the quadratic
form g,,(x)V*V*. Thus we get the Theorem 55:

TaeorREM 55. The Minkowskian metric of the V* at x defined by
the mechanical tensor g,,(x) leads to a normal hyperbolic Riemannian
metric of the world-manifold, by taking the square of the ds of an
infinitesimal displacement from x to x -~ dx on a line as the value of
the quadratic form g,,(x) dv* dx* for the contravariant vector of com-
ponents dx*

ds* = g,,(x) dx* dx*. (11)

In the case of a world-line of a particle we get from the first Hamilton

equation (1-9)

vt = P*dz, and g, (x) d¥* dx’ = g,,(¥)P*PY dz,? (12)
since g,,(x)P*P' = g*¥(x)P,P, we have
ds* = g®'(x)P,P, dz,2. (13)
When P,P* is identified to 2K(p, x),, the Eq. (13) becomes
ds* = 2K(p, x), dz,2 (14)
and by taking into account the definition (1-18) of ds, we get
ds® = ds,>. (15)

Thus we get the Theorem 56:

THEOREM 56. The Riemannian metric of the world-manifold de-
fined by (11) gives the square proper-time differential ds,2 for the in-
finitesimal displacements dx* on the world-lines of the particles, when
the Postulate of identification of P,P* and 2K(p, x), is valid, therefore
when S(x) = 0.

The Theorem 56 shows that the introduction of the normal hyper-
bolic Riemannian metric of the world-manifold, with the mechanical
Zu(¥) as the metric tensor, leads to a generalization of the dynamical
definition of the proper-time to any differentiable world-line, for S(x) = 0.
We shall introduce the following definition:

Derinition.  The ds? of the Riemannian metric given by (11) is the
square of the proper-time differential corresponding to the infinitesimal
displacement dv* on any world-line of S, when S(x) = 0.
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We have the Theorem 57:

TureoreM 57. The distinction of the time-like infinitesimal displace-
ments with ds? > 0, the space-like infinitesimal displacements with
ds? < 0 and the null infinitesimal displacements with ds* = 0 renders
the world-manifold into a space-time. The space-time structure is based
on the existence of the mass-metrics in the vector spaces of the me-
chanical momentum vectors P, and P* at all the points x of the world-
manifold for S(x) = 0

g(x)P,P, = m? and g, (x)P*P" = m?. (16)

The existence of the space-time structure is also related to that of
a mass/charge formalism of the particle dynamics for S(x) = 0.

It is noteworthy that the second group of Hamilton equations (1-9)
does not come in in the mechanical construction of the normal hyper-
bolic Riemannian metric of the world-manifold, only the first group

dx* = g”(x)P, dz,. (17)

4a. The Theorems 8 and 9 show that the inertial properties of the
particles are described by the function N(p, x), because it gives the
Hamiltonian K(p, x), of the free neutral particles, whose motions are
purely inertial. Since N(p, x) is determined by the two fields g"¥(x)
and S(x), as a consequence of the Eq. (4-5), we have the Theorem 58:

TaeorEM 58. The two fields g*¥(x) and S(x) describe the inertial
properties of the particles. When we take S(x) = 0, those inertial prop-
erties are completely described by the tensor field g#(x). The Riemannian
metric of the world-manifold is therefore determined by inertial prop-
erties of the particles.

We have also the Theorem 59:

THEOREM 59. The inertial properties of the particles determine also
the affine connection of the world-manifold given by the Christoffel

A
symbols { } and the Riemann-Christoffel curvature tensor R} .,
mov

().
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as well as the Einstein symmetric tensor S,, of the field Eqs. (3a-5).

The Einstein system (3a-5) is a set of partial differential equations
for the inertial tensor g#’(x) of the particles. It may also be seen as a
system for the determination of the inertial function N(y, x), when
S(x) = 0.

.



Time and Mass in Relativity 193

The function K(y, x) of the nine variables y,, Y., &%, defined by the
Eq. (4-9), is a polynomial of degree 2 of the five y, with coefficients
built with the g*¥(x), S(x) and 4,(x). We have the Theorem 60:

TaEOREM 60. When S(x) = 0, the Einstein equations for the g**(x)
and the electromagnetic partial differential equations for the A, (x)
constitute a set of partial differential equations for the determination
of the polynomial K(y, x) of the y. When S(x) is not constant we need
also another partial differential equation for S(x), in order to determine
the function K(y, x). The determination of K(y, x) leads therefore to a
unification of the theories of the inertial fields g"*(x) and S(x) with the
electromagnetic field.

The above results show that the Hamiltonian Function K(p, x) of the
mass-charge formalism is a key element of the whole Classwal Physics,
giving a unified description of the basic geometric-inertial fields and of
the electromagnetic field. K(p, x) is also related to the Hamiltonian geometry
of the world-manifold, besides its Riemannian geometry, and to the Clas-
sical statistical mechanics, in its relativistic form. Thus the mass concept
appears as the central concept of the whole structure of the Classical Physics.

4b. It follows from the Hamilton equations (1-3) and the Eq. (4-7)
that the absolute differential DP,, corresponding to the Riemannian
metric defined by the inertial tensor g**(x), has the value

A
DP, = eF,,(x)dx’ with Dp, = dp, — {,u v} p,dxy (1)

so that we have a satisfactory relativistic equation for the absolute
differential DP*

DP* = ¢g®(x)F,,(x) dx. (2)
In the case of a free particle
DP* =0 (3)

so that P* undergoes a parallel displacement of the affine conmnection

A
{ 1} along the world-line of the particle. Since P* = dx*|dz, we get
ILL )
the differential equation of the world-lines of the particles
A [dz,2 + { [uo} dx*[dz, dx°[dz, = eg"(x) I, ,(x) dx°|dz, (4)
p

not involving any particular value of the mass .
By expressing dz, in terms of ds, the Eq. (4) becomes

a2x*[ds? + {Plu 6} dxelds dx°|ds = (2K(p, x),)~V2eg" (x)F,,(x) dx°/ds  (5)

for K(p, x), # 0. We have the Theorem 61:
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TueoreM 61. The differential equations of the world-lines of a
particle with charge ¢ and mass m are obtained from (5) by the sub-
stitution of 2K(p, x), by m?, for m # 0. When e = 0, the Eqgs. (5)
become the ordinary differential equations of the non-null geodesics of
the world-manifold, with the metric tensor g,,(x). The Egs. (4) with
e = 0 are the differential equations of all the geodesics of Sy, including
those with ds? = 0.

By the introduction of the new parameter w = ¢z, we get from (4)
a system of differential equations of the world-lines of the particles
applicable to all the charged particles

a2+ [dw?® + { 4 0} dxe|dw dx°|dw = g**(x)F,,(x) dx*|dw (6)
P
because it does not involve e.

4c. We shall now consider the Hamilton system for the variables
P x* with the Hamiltonian function M(p, x), and the parameter s,

dxt = 9, M(p, x), ds,, dp, = — 9,M(p, x), ds,, (1)
M(p, %), = (2K(p, x),)'"* (2)

the Hamiltonian M (p, x), and the parameter s, being real. We have the
Theorem 62:

TuroreMm 62. The solutions of the system (1) with real values of
s, and K(p, x), are the same as those of the Hamilton system (1-9)
with ds, given by (1-18), for K(p, x), > 0. The values of the constant
of the motion M(p, x), on the world-lines of the particles satisfying the
Eqs. (1) give the corresponding positive values of the masses #. s, is the
real proper-time parameter.

The introduction of the Postulates A and B of Sec. 4 gives
M(p, 5)s = (€7@ (py — eAu@)(py — ed,(x) + S (3)

Thus we obtain an extension to General Relativity of the mass formalism
given in (SCHONBERG 1947) for Special Relativity with S(x) = 0, which
1s naturally related to the wave equations of the first order of the relativistic
quantum mechanics of the type of the Divac equation.

The operator M,, = y*(pu.0p — €A, (x)) is a quantum analog of
M(p, x), for the particles with spin }, in Special Relativity. The Dirac
equation can be written as M,,b = mp, corresponding to the classical
Hamilton-Jacobi equation for the particles with charge e and mass m,
M(U,, x), = m, obtained from the Hamilton-Jacobi equation associated
to the system (1)

ng + MV, %), =0 (4)
by taking
V(x, s,) = — ms, + U(x). (5)
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We have the Theorem 63:

THEOREM 63. The type of Hamilton-Jacobi partial differential
equation (4) leads to the introduction in Special Relativity of a general-
ized Dirac equation, with a wave spinor (v, s) not involving any par-
ticular value m of the mass of the particle

ihdgp = M, (6)
The ordinary Dirac equation M,y = mys corresponding to the partic-
ular solution

$(x, ) = th(x) exp(— is[h). (7)

5. The Four-Dimensionality of the World-Manifold

We assumed in the preceding sections that the world-manifold is
four-dimensional, but this assumption could be easily dropped, by a
slight modification of the Postulates A and B in order to get a normal
hyperbolic metric for a value n > 4 of the dimensionality of the “world-
manifold.”

The four-dimensionality gives special properties to the antisymmetric
tensors of the second order £,,, even at the pre-Riemannian level of the
geometry of the differentiable manifold, as a consequence of the existence
of the scalar -density &(E, E’), bilinear and symmetric with -respect to

E,, and E,/, built with the Levi Civita antisymmetric tensor-density
Fk/lu\

e(E,E) = }e*WE_E,) . (1)

At the Riemannian level of geometry, we get the well known duality
of the Eu\) E

*Euy = 3lg?€4008” " Esy (¢ = determinant of g,,). 2)

The dual *I,,(x ) of the electromagnetic field Tuv( /) derived from the
potentials 4 ,(x) is precisely the field involved in the non-homogeneous
Maxwell equatlons This shows already the need of the four-dimensionality
for the electromagnetic theory. We have discussed in considerable detail
the role of the tensor-duality in the electromagnetic theory, in our
paper (SCHONBERG 1971), in which we have also given a construction of
the geometry of the world-manifold based on the electromagnetic theory
in a general differentiable manifold.
We have the Theorem 64:

THEOREM 64. In the dynamics of a particle, the four-dimensionality
of the world-manifold plays a central vole in the theory of the spin, whose
basic vector S* for the spin is defined in terms of the angular momentum
tensor M, and P,, by means of the Levi Civita g°*

St = 'élgl_l/zsuvna‘wvopo' (3)
The scalar g,,(x)S"S¥/m? gives the value of the square of the spin of the
particle at the point x of its world-line.
13*
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In the paper (SCHONBERG 1971), we started from the existence of
the two electromagnetic tensors *F,, and F,,, related by a linear op-
erator L satisfying two conditions

*F = LF with L2 = —1,, and &(LE, E') = ¢(E, LE’) for all E, E’
(4)

suggested by Eq. (2), which involves only the tensor C**(x) of the con-
formal geometry of the world-manifold

Cr¥(x) = [g[V4g" (x). (%)

The Egs. (4) were used to obtain the conformal metric of the world-manifold,
which can be associated to a normal hyperbolic Riemannian geometry, as
a consequence of the sign minus in the second Eq. (4). The Eq. (2) leads
to the second Eq. (4) only for g(x) < 0.

The above discussion leads to the Theorem 65:

THEOREM 65. The four-dimensionality of the world-manifold and
the normal hyperbolic type of its Riemannian metric, obtained from the
inertial tensor g*(x) given by the relation between the P* and P,, are
determined by the condition of the existence of an electromagnetic
tensor *F,,(x) satisfying the equation *(*F,,(x)) = — F,,(¥). The in-
ertial tensor g*(x) describes also the properties of dielectricity and
magnetic permeability of the world-manifold, by means of its associate
conformal tensor C*¥(x) of Eq. (5), which defines the relation between
the two electromagnetic fields *F,,(x) and F,(x).

The results of the present paper and those of (SCHONBERG 1971) belong
to a new level of the Theory of Relativity, not coinciding with either Special
Relativity, General Relativity or any of the forms of unified field theories,
but related to those other three levels. The new level of Relativity is char-
acterized by a different approach to the geometry of the world-manifold,
relating all its properties to physical properties of matter, even its four-
dimensionality.
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