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ABSTRACT

The mathematical formalisms of the quantum mechanics and the quantum field theory are inter-
preted as special kinds of geometric algebras closely related to the vector calculus and to the calculus
of points. The algebras of operators of the quantized fields appear as geometric calculi of general three-
dimensional spaces. It is shown that the operators and states of the quantal systems and fields have
rather simple geometrical meanings. The present relations between the quantal physics and the geo-
metry of the space-time are essentially different from those involved in the general theory of relativity
and the classical unified field theories, for they depend on the finite value of the PLANCK constant.

The geometrization of the quantal physics requires a further development of the ordinary theory
of space and the introduction of new kinds of geometric objects corresponding to the quantal states.
The operators describing the physical quantities are, however, related to simple intuitive geometric ob-
jects, such as points, vectors, trihedrals and spheres. The present geometrical approach leads to a
fusion of the HEISENBERG and SCHRODINGER pictures of the quantal motion, the states being de-
scribed by elements of the geometric algebras and the observables too.

The kinematical aspects of the quantum theory have already been extensively discussed along the
present lines, but the treatment of the dynamic ones is still rudimentary, especially with respect to
the interactions between fields. The relations between the present geometric theory and the general
relativity are as yet not known.

I

Geometrization of the Energy-Momentum and the Spin. The relations between the
quantum physics and the theory of the space-time properties are not yet well under-
stood. It seems very likely that a deeper analysis of those relations will lead to
important modifications of our geometrical ideas and will play a considerable part
in the future development of the quantum theory, both in the clarification of its

fundamental principles as in the construction of the theory of the elementary
particles.

It is rather surprising that the relations between the quantum theory and the
analysis of the space-time structure should not have attracted the interest of the
physicists and mathematicians, especially after the intense interest raised by the
general theory of relativity and its connections with the Rmeman~ian geometry. The
only branch of the geometrical theory whose significance for the quantum physics
has been satisfactorily appreciated is the theory of the linear representations of the
groups of displacements and reflections of the three-dimensional Evcripean space
and the four-dimensional MiNgowskian space-time. In connection with the re-
presentation theory some geometric algebras have been used to a considerable
extent, the réle of the Crirrorp algebra of the space-time being particularly im-
portant.
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Recently there has been a renewal of the interest in the discussion of the rela-
tions between physics and geometry. The quantization of the gravitational field is
being studied, as well as the inclusion of the quantum field theory in the frame of
the Rizmannian geometry. The fundamental results of Lee and Yaxe on the non
conservation of the parity have given a strong incentive to the discussion of the

geometrical problems of the quantum field theory.
The existence of a fundamental relation between the quantum theory and geo-

metry is implicit in the e Broarin formula 2 = k/p, which allows to measure the
momentum in cm~1. Thus the basic dynamical variable p is geometrized. The geo-
metrical meaning of the linear momentum is clearly shown by its association to the
differential operators for the infinitesimal spatial translations. In a similar way the
orbital angular momentum components are essentially the differential operators

for the infinitesimal rotations.
Tt is well known that the Crirrorp algebra C, is a kind of vector calculus for the

metric geometry of a four-dimensional space. The existence of such an algebra in
the relativistic quantum theory of the particles with spin 1/2 gives another basic con-
nection between the quantum physics and the geometry of the space-time, which s of @
simpler kind than that given by the linear and orbital angular momenta. The anti-
commutativity of the operators y, expresses the geometrical relation of orthogona-
lity of the basic vectors of the cartesian reference frame of the space-time, which
are described by the y, in the Crirrorp vector calculus.

The above interpretation of the anticommutation rules y,y, + 7,7, = 29,,* 1 sug-
gests that the commutation rules of the quantum theory express always geometrical
relations. This idea led us in 1955 to look for a geometrical interpretation of the
HreiseNBEre commutation rules. We found a very simple interpretation by going
over to the affine geometry of the Eucripean three-dimensional space [1]: Zhe p,
are the symbols of the basic contravariant vectors and the g’ those of the basic covariant
vectors in an affine vector calculus that gives an extension of the commutative
Grassuany algebra of the vectors. In the p, g calculus the contravariant vector of com-
ponents V7 and the covariant vector of components U, are described by the sym-

bols {(V} = Vip, and (U} = U,q'. The geometrical relation between the vectors U

and V is expressed by the commutation rule (U} {V} — (V}{U} =+ U, V?.1. The
symbols (U} and (U} of any two covariant vectors U and U’ are commutative and
those {V}, {(V'} of any two contravariant vectors —1—7 and —17’ are also commutative. It
is clear that this commutativity is related to the impossibility of building an
invariant with the U,, U}, or with the Vi, V'

In 1956 we extended the above kind of affine vector calculus [2] by the intro-
duction of a new generator { P}, which we interpreted later [3] as the symbol of the
origin of the cartesian coordinates. This calculus of points and vectors allows to deal
not only with the observables of a spinless non relativistic particle but also with iis
states. The present algebra gives a synthesis of the HEISENBERG and SCHRODINGER
representations, the states being represented by the elements of a basicleft-ideal.
This geometric algebra gives an interesting extension of the separable HiLBERT space,
which allows to deal with plane waves and also with symbolic functions such as the
Dirac 6 and its derivatives of all orders. Our geometric algebra gives a geomeiric theory
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of the temperate distributions and more general mathematical entities, which are not
Scmwarrz distributions.

The passage to the affine geometry leads to an extension of the Crirrorp algebra
[1], in which there are symbols for the contravariant and covariant vectors. In the
case of a n-dimensional space we have 2n generators (I,) and (I*) corresponding
to the basic contravariant and covariant vectors of the cartesian coordinate system,
with the commutation rules [(Z,), (1,)]; = 0, [(I*), (I*)]y = 0, [(L,), (I)]. = 0,-1.
The Crirrorp algebra is the sub-algebra of this (I) algebra generated by the ele-
ments y, = (I,) + g,,(I?). In the case of the space-time, the (I) algebra can be
represented by 16 x 16 matrices. This seems to indicate the existence of 4 types of
fermions, which may perhaps be identified with the electron, the newtrino, the u meson
and the baryon, the eight kinds of baryons being regarded as different states of the same
type of fermion.

The consideration of the affine geometry of the flat space-time is a characteristic
feature of our theory, which requires both the LorEnTz group and the full linear
group for its development. T'%e latter group is likely to play an important part in the
analysis of the inertial effects, since the components I';, of the affine connection trans-
form as those of a tensor for arbitrary non-singular linear transformaiions of the space-
time coordinates, and Iy, = 0 in any cartesian coordinate system of the flat space-time.
The Lorextz group allows to distinguish the rest-masses, because g*’p, p,p = m? vy,
m denoting the rest-mass and y the wave function of a particle. g#*p, p, is the ele-
ment of our p,q vector calculus associated to the tensor g+.

The non-relativistic quantum mechanics allows the identification of the opera-
tors p; of the linear momentum with the symbols of the basic contravariant vec-
tors in the above geometric algebra, because it involves the constant # which may
be taken as 1 in a convenient system of units. In the relativistic quantum theory we
have the natural system of units in which b = 1 and ¢ = 1, so that all the physical
quantities have dimensions of powers of a length. The full geometrization of physics
requires the two constants b and ¢, which are precisely given by the relativistic quantum
theory.

I

Geometrization of the Electric Charge and the Iso-Spin. In 1957 we introduced a special
kind of orientation of the points of a manifold [3], by considering them as centres of
bundles of incoming or outgoing curvilinear rays. This kind of orientation is closely
related to that of a sphere by taking its radii oriented outwards or inwards,
thereby it was called spherical orientation. We used in our point-calculus of a
manifold three kinds of points: spherically non-oriented points and points with
each of the two spherical orientations. The spherical orientation of points is ob-
viously related to the old FArapAY picture of the point-charges as sources or sinks
of lines of force. We had shown [3] that there is a calculus of points on a manifold that
gives the formalism of a quantized field of spinless neutral particles when applied to
a space-like hypersurface of the space-time. The introduction of the spherically oriented
points allows to obtain a quantized field of charged spinless particles as a calculus of
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spherically oriented points. By using also spherically non-oriented points we geometrized,
the theory of the quantized pion field, the sub-algebra of the spherically non-oriented
points corresponding to the neutral pion field.

The orientation of the radius of a sphere is a special case of that of a two-sided
surface by the choice of an orientation of the normals. The definition of the normal
depends of course on the metric but this kind of orientation is actually indepen-
dent of the metric, for it amounts to a distinction of the two sides of the surface,
i.e. to its outer orientation. We may define the spherical orientation of a volume
by the choice of a side of its boundary. The spherical orientation of a point can be
defined through the spherical orientation of a volume containing the point, hence
through the outer orientation of a surface. The outer orientation of p-dimensional
manifolds in a n-dimensional space is related to the antisymmetric covariant ten-
sors of the order n — p. The spherical orientation of the three-dimensional volumes or
points is therefore related to the antisymmetric covariant tensors of the second
order of the space-time, because the boundary of the volume is a two-dimensional
manifold of the space-time. T'hese considerations show that it is satisfactory to asso-
ciate the electric charge to the spherical orientation of points in a three-dimensional
space-like hypersurface of the space-time, since the electromagnetic field is described by
an antisymmetric covariant tensor of the second order of the space-time.

The identification of the electric charge with an index of spherical orientation
gives a clue for the explanation of the fundamental fact that the charges of all the
known charged elementary particles are either e or —e. 7'he charge conjugation is
thus related to the reversal of the spherical orientation.

In our geometric calculus of points for a manifold, the points not endowed with
screw-orientation lead to the quantized scalar field. The calculus of the screw-
oriented points leads to the quantized pseudo-scalar field. The introduction of
points with the two spherical orientations leads to the replacement of the ordinary
one-dimensional linear space of the pseudo-scalars by a two-dimensional linear
space: the direct sum of the one-dimensional linear spaces corresponding to the
two kinds of pseudo-scalars associated to points with opposite spherical orien-
tations. We are thus led to the consideration of the full linear group in two vari-
ables. T'he gauge group is obviously the rotation group of this two-dimensional linear
space.

The introduction of spherically non-oriented and spherically oriented points leads
to a three-dimensional linear space: the direct sum of the one-dimensional linear
spaces of the pseudo-scalars associated to the three kinds of points. Thus we get the
space of the iso-spin from our calculus of points. The iso-spin space does not appear
here associated naturally to a three-dimensional orthogonal group, but rather to
the full linear group in three variables. The algebras of the iso-spin should therefore
be algebras of the affine three-dimensional geometry, rather than algebras of the
metric geometry. The introduction of a metricin the iso-spin space should lead to
a kind of finer distinction. It is indeed so: the iso-spin algebra of the pion field is the
total matriz algebra of the iso-spin space: the iso-spin algebra of the kaon field is the
total matriz algebra of the direct sum of the linear spaces of the scalars and vectors of
the iso-spin space; the iso-spin algebra of the baryon field is the (I) algebra of the con-
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travariant and covariant vectors of the iso-spin space. This algebra is the three-dimen-
sional analogue of the (I) algebra of the space-time discussed in section I. The intro-
duction of the Evcrinean metric in the iso-spin space leads to the distinction of the
two kinds of kaon fields and the four kinds of baryon fields. The above (I) algebra
is iso-morphic to a Crirrorp algebra of a six-dimensional space, and its irreducible
representation space has eight dimensions (spin-space of a six- or seven-dimensional
space). A preliminary discussion of the geometrization of the iso-spin was given in
reference [3], a more complete discussion will be given in a forthcoming paper.

It is interesting to note that the spherical orientation and the iso-spin space appear
related to the topological properties of space, rather than to its metric or affine proper-
ties. '

The iso-spin seems to be a property of the elementary particles existing both in
charged and neutral states: pions, kaons and baryons. Besides the iso-spin, it is
necessary to consider another variable: the strangeness or the U of p’EspaGNar
and Prextkr [4]. The value of U for each of the known particles is the sum of the
values of the index of spherical orientation in the different states of the particle, the
iso-spin I defining the number 21 + 1 of those states. The present definition of U
may also be applied to the muon, the leptons and the photon.

III

Geometrization of the Quantized Pseudo-Scalar Fields. In reference [3] we discussed
different types of geometric calculus corresponding to various kinds of quantized
fields: Pavri-Weissgorr field, Dirac field, Maxwerr, and Proca fields. In all those
cases the geometric calculi are those of a three-dimensional manifold, embedded in the
four-dimensional space-time. This is related to the fact that each of those fields has
quanta with a definite value of the restmass m. In the relativistic wave mechanics,
the D’ ALEMBERTian operator is essentially a rest-mass operator, its eigenvalues giving
the values of — m?2. The choice of a value of m leads to the Fock-KLEIN-GORDON
equation, which is the basic equation of motion. The wave functions of a particle
are eigenfunctions belonging to a single eigenvalue of the D’ ALEMBERTian and this
leads to a three-dimensional geometric calculus. This is shown clearly by the
fact that the energy-momentum manifold of a particle is three-dimensional, as
a consequence of the fixation of the value of the rest-mass.

The Wiener theory of the irreducible unitary linear representations of the in-
homogeneous LoreNTz group [5] gives an abstract four-dimensional geometrical
meaning to the fixation of the values of the spin and the rest-mass of the quanta of
a field. It is intuitive that the choice of a non-null rest-mass amounts to the introduction
of a unit of length, in a covariant way. The choice of a value of the spin must corre-
spond to a distinguished part attributed to some special geometric object, which must be
of a purely spatial nature, because the spin is related to the spatial rotation group.

The representations of the LorENTz group corresponding to integral values of
the spin are also representations of the full linear group in four variables. The
geometric objects associated to these representations must therefore be affine objects,

325



M. Schonberg

whereas those associated to the half-integral spins must be objects of the metric geo-
metry, not included in the affine geometry.

The above discussion indicates that the fields with spin 0 ought to be associated
to the simplest three-dimensional affine objects: the points of space. The spin 1
fields should be associated to the straight lines or the planes. The simplest three-
dimensional Evcripean metric objects are the sphere and the rectangular trihedral.
The free rectangular trihedral vs actually an object of the branch of geometry associated
to the group of rotations and stmilarities. We may therefore expect the rectangular
trihedrals to be associated to spin 1/2 fields with zero rest-mass of the quanta, the Fock-
Kieiv-Gorbon equation with zero rest-mass being invariant for space-time similari-
ties. These fields are described by two-component spinors."We should expect the four-
component spinors to be associated to spheres.

We discussed in detail in reference [3] the calculus of points of a manifold asso-
ciated to a quantized scalar field. From the analytical point of view, this calculus
deals with true and symbolic functions of the points of the manifold and with func-
tionals on those functions. This calculus gives a powerful kind of functional ana-
lysis and presents also considerable interest from the geometrical point of view,
since the introduction of coordinates on a manifold is based on the numerically-
valued functions of the points of the manifold. The geometrical analysis of the
pseudo-scalar quantized fields given in reference [3] is not satisfactory, for we
were not able to identify clearly the nature of the geometric object associated to
those fields: the screw-oriented weighted points. The relations between the vector
fields and a three-dimensional calculus of planes were also analysed in [3]. The
interpretation of the calculus of the two-components spinors as a calculus of free
rectangular trihedrals was also given in [3] and applied to the analysis of the
spin 1/2 fields.

v

The geometric calculi corresponding to the quantized pseudo-scalar charged and
neutral fields are associated to remarkably simple real objects of the three-dimen-
sional Evcripean space. Let us consider firstly the pseudo-scalar neutral field. The
contravariant antisymmetric tensors of the order p of a n-dimensional affine space de-
scribe p-dimensional free hypervolumes endowed with inner orientation, when they
are simple p-vectors. The covariant antisymmetric tensors of order p corre-
sponding to simple covariant p-vectors describe (» — p)-dimensional free hypervo-
lumes endowed with an outer orientation. The simplest case is that of p = n, in
which we get the two kinds of pseudo-scalars: the contravariant ones describe free
screw-oriented n-dimensional hypervolumes; the covariant ones describe free screw-
oriented weighted points. We may build a calculus for the free screw-oriented points
and n-dimensional hypervolumes analogous to that for the free covariant and
contravariant vectors corresponding to the HersenBERG algebra of the position and
momentum operators. We associate to the antisymmetric tensors of ordern: w;, ... ;.
and v/ i elements {u) and {v} of an algebra with the following commutation rules

[{u}, (u'}] = O, [{v}, '}] = O, [0}, (w)] = w1, .. w0hm (1), (1)

326



W —

Quantum Theory and Geometry

{1} denoting a unity element. This algebraic structure is obviously of a basic na-
ture, sinceitisrelated to the differential calculus of the functions of asingle variable,
being isomorphic to the z, d/dx algebra.

In the case of a general n-dimensional differentiable manifold, we must consider
fields u;, ... j, (P), viv+--in (P), for it is no more possible to introduce free tensors. The
above algebra of the {u} and {v} must now be replaced by a more powerful forma-
lism generated by symbols (%) and (v), (u) being associated to the pseudo-scalar
field % (P) and » to a linear functional v [« (P)] on the % (P). The commutation rules
of the symbols (u) and (v) are

[Kud, <w'>] = 0, [y, w»] =0,  [<v), <wd] = v[u] <1). (2)

Let us assume that our manifold M is endowed with a measure of the hypervolumes.
We may associate to v[u] a contravariant pseudo-scalar field v(P), such that

v[u] = f vlsn (P) . . (P)dP, for sufficiently general linear functionals v [«] and
M

sufficiently general fields  (P), d P denoting the element of hypervolume. (») may
now be regarded as the symbol of the contravariant pseudo-scalar field v (P). The
effective construction of the present geometric algebra can be done by means of a
suitable restriction of the linear space of the « (P). Let us assume that the allowed
u(P) constitute a separable Baxacu space endowed with a complete bi-orthogonal
set of functions u,(P) and linear functionals v»,[%], v, [u] = 0,,. We take
v =Xctv,, u(P) = ¢, u,(P), so that v[u] = X ¢ ¢, (¢ is not the complex con-
jugate c* of ¢,). The commutation rules (2) for the (u) and (v) are satisfied by
taking (uy = X¢, (u,), () = X ¢} (v,>, the commutation rules for the (u,), (v,» being

[Kuy), <up] = 0, [<op), <w] = 0, [<vp), wd] = 6,,,<1>. (3)

When the manifold M is endowed with a measure of hypervolumes, we may in-
troduce a bi-orthogonal complete set of functions u, (P), v,(P):

f’Ur(P)us(P)dP 5 61,35 ZUT(P)’U’T(P,) =6(P’ P,) (4)
M

The symbolic function (P, P’) is defined by the condition

[F(P)8(P,P)dP = F(P'),

F (P) denoting an arbitrary continuous function. The functionals v, [«] are now
defined as follows: v, [u] = f v, (P)u(P)d P. We have indeed v,[w,] = 6, ,. In the
i

particular case of an Evcripean space, we may use only orthogonal cartesian coordi-
nates. Thus it is no more necessary to distinguish the two kinds of pseudoscalar
fields % (P) and v (P), which transform in the same way for orthogonal transforma-
tion of the cartesian coordinates. Instead of the general bi-orthogonal complete
sets u, (P), v, (P), we shall use a complete orthonormed set v, (P) = uj (P). We shall
now denote <u,> by (v,5*. The commutation rules (3) have now the form of those for
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the absorption and emission operators of a pseudo-scalar field corresponding to the
states v, (P) of the quantum

[<v.), (] = 0, [>T, <w*] = 0, [Koe), <opp*] = 6, , <1). (5)
Let us introduce now the elements (P) and (P)+
(Py = X<, u,(P), (PY* = Z<u,) v, (P) (6)
which correspond to the absorption and emission operators at the point P

[<P>5 <P’>] = Os [<P>+: <Pl>+] = O’ [<P>: <P,>+] = 6(P: P,) <1> (7)

(P) and (P)* have the transformatién properties of a covariant and a contravari-
ant pseudo-scalar field, respectively. (P’'>* is the symbol of the ,classical® field
up(P) = 6(P', P); (P'y is the symbol of the linear functional vp [u] = u(P’).
We may interpret (P) as the symbol of the screw-oriented point P. We have

@) = [u(P)<Py*dP, (v = [v(P)<PdP. (8)
M ; M

The above discussion shows very clearly that the duality of the absorption and
emission operators of the quantized pseudo-scalar field reflects the duality of the
»classical“ contravariant and covariant pseudo-scalar fields, when M is endowed
with a measure of hypervolumes. We shall now assume only that M is para-
metrized by means of coordinates /. d P will now denote simply da?,...,da",
instead of an invariant element of hypervolume. The v, (P) will now be taken as
scalar fields. With the present definition of d P, the symbolic function 6 (P, P’)

characterized by the condition f F(P) 6(P, P')dP = F(P')has the transformation
M

properties of «(P). Instead of the duality of the contravariant and covariant pseudo-
scalar fields, we get naturally a duality of scalar and covariant pseudo-scalar fields,
when no measure of hypervolumes is introduced. It follows from (6), with the present
transformation properties of the u, (P) and v, (P), that (P) has still the transform-
ation properties of a covariant pseudo-scalar but (P>+ behaves as a scalar. We may
now use the ,.quantized* pseudo-scalar field Py for the description of the screw-oriented
points and the ,,quantized scalar field ( Py+ for the description of the non-oriented points.

v

We shall now consider the case of a n-dimensional affine space 4,,. The 2/ denote car-
tesian coordinates and dz = d @, ..., dz" Weshall write (z) = (P)and (z)* = (Pyt,
Let us introduce the symbols <%y and (%y*

g o > a=> s 2] - -
k> = (2 n)-n»/ZfeXp (k) xydx, Iyt = (2 n)"‘/zfexp (—e k;29) Cxdt dz; (9)

<;c>> behaves as a scalar and (_Z)c>+ transforms as a contravariant pseudo-scalar for
-
changes of the cartesian coordinates. We can take the (% and <k>* as generators of the
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algebra of the ,,quantized* pseudo-scalar field. The commutation rules are
[&), (B)] = 0, [By*, E>H] =0, [(B), oy = (27)"2 exp (— i &, a7) <1>. (10)

We may alternatively take the (z)*+ and &> as generators. The formalism of the
quantized scalar or pseudo-scalar field appears now as a kind of calculus for the
contravariant and covariant vectors of 4,.The first and second commutation rules
(10) are similar to those of the (U}, { ¥} algebra of section I, but the third rule is es-
sentially different from the corresponding one of that algebra [{U}, {V}]] = U, V1.1,

In the case of the Evcrinean spaces we may take conveniently d P as a measure of
non-oriented hypervolumes. hy and <&)* have now the transformation properties
of the covariant and contravariant pseudo-scalars, respectively. They transform,
however, in the same way for the orthogonal substitutions of cartesian coordinates.

We shall now replace the Evcripean k-space by the hypersurface of equation
ky = (& + m*)Y2 of a k,,k; space endowed with the infinite metric k2 — X k3.
The element of hypervolume on this hypersurface is m ky'dk,, ..., dk,. It is now
necessary to replace (& and (Ey* by &y = Vk,/m (7(:)) and k)t = VW(I-;)*, respec-
tively. We have

[, &3] = 0, [yt D = 0, [y, k0] = 28 (k —F). (1)

These commutation rules are invariant for the homogeneous linear transformations
of the k,, u = 0,1, ..., n, which leave invariant k3— X kf and do not change the
sign of k,. In the case of n = 3, our hypersurface is the relativistic energy momen-
tum manifold of a particle with rest-mass m. The n-dimensional Evcripean space
of the z/ will be regarded as a hyperplane z° = const of the pseudo-Eucripean
space of dimensionality » + 1 with the metric (2°)2 — X («7)2. Let us introduce the
symbols [x], [z]* 2
[z] = (2m)"2 mfexp (—ik, 2#) <k byt dky, ..., dk,,
= (12)

oo

[2]* = (27) "2 m [exp (i b, 2*) <k>* kg'dky, ..., Ak,.

The [«] and [z]* transform as (n + 1)-dimensional pseudo-scalars for the homo-
geneous linear transformations of the z* that do not change the sign of 2° and
leave invariant (2°)?% — X (a7)2. They satisfy the Focr-KieN-GorpoN equa-
tions 0,0"[x] = —m?[z] and 9, 0% [z]* = —m?[z]*. When n = 3 the quantized
neutral pseudo-scalar field with quanta of rest-mass mis (y,> = (1/5 m)‘l ([=] + [2]%),
(1/57)2)’1 [«] and (1/5 m)_l [x]* being the positive and megative frequency parts of
(., respectively. Indeed we have
[[=], [=]] =0,  [[=]* [2']"] = O, [[2], [2']*] = 2¢ m A (x — 2') (1), (13)
[(w.)s <wrd] = ¢ d(x — ') (1). (14)
Thus we have obtained a kind of geometric calculus for the space-ttme by means of the
algebra of the pseudo-scalar fields and screw-oriented points of a three-dimensional
manifold.
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The [«], [«]* algebra does not deal with the general pseudo-scalar fields of the
MinkowsKian space-time, but only with those satisfying the Focx-Krrin-GorpoN
equation for the value m of the rest-mass of the quantum. The [2] do not describe
world-points in the same way as the () describe the points of three-dimensional
space. It follows from (12) that

+4 oo
[#los—0 = [G(m |7 — T'|) &'>dZ’. (15)

The function G can be expressed in terms of HaNkxrL functions and tends to 0 ex-
ponentially when m |z — %’| > 1. Since (z'y is the symbol of a point of the hyper-
plane 2° = 0, [2]w—o describes a kind of blurred spherical region of radius » ~ m™1
centred at the point of position vector z. The same conclusion is obtained by taking
the third commutation rule (13) for two world points whose interval s is space-like.
In this case 4(*) can be expressed in terms of a HaNkEL function of ms, which
tends exponentially to 0 when m |s| > 1. The [x], [*]* geometric algebra of the
Mingowskran space-time gives us a covariant calculus of spatially extended ,,points,
so that we have a kind of granular space-time.

VI

Quantal Geomelry. The aim of the geometrization of physics cannot be the description
of the properties of matter by means of the concepts of the Evcripean geometry
of the threedimensional space and the Mixgowskran geometry of the space-time
or of the concepts of any kind of geometrical theory chosen a priori. The geo-
metrization of physics involves necessarily a revision of the ideas of space and time
aiming at the suppression of the philosophically insatisfactory separation of the
spatial and temporal properties of matter from the other properties. We must use
the knowledge of the properties of matter given by the quantum physies in order
toimprove the ,,materialization‘ of the space-time of the general theory of relativity.

The wave mechanics shows that the position and momentum variables are inter-
locked. The spatical location of matter can not be described by giving the coordi-
nates of a set of point-like particles and the state of a system is no more described
by the position of a point in its phase-space. The Hamiuronian formulation of the
classical mechanics showed already that the momentum of a particle is actually a
covariant vector, a kind of geometric object related to wave properties, whereas in
the Newronian formulation the momentum appeared as a contravariant vector.
The classical statistical mechanics showed the importance of the hypervolumes of
the phase-space, which are scalars built with contravariant and covariant vectors.
The association of the covariant and contravariant vectors in the description of
the quantal motion of the particles lies at the core of the wave mechanics: the mo-
mentum operators are —10; in the ScuropIiNeer wave formalism, when h is taken
as 1. Our identification of the HEisExBEre p, ¢ algebra for a particle with an al-
gebra of the covariant and contravariant vectors of the three-dimensional affine
space [1], discussed in section I, constitutes therefore a development of geometrical
theory corresponding to the new kind of spatial location introduced by the wave
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mechanics. We showed in references [1], [2], [3] that this algebra of the contra-
variant and covariant vectors is closely related to the symplectic geometry of the
classical phase-space of a particle, associated to the Pomwcars and Liouviine
integral invariants and the Hamrzronian form of the classical mechanies.

We showed in reference [3] that the ScErROpINGER and HEISENBERG represen-
tations of the quantum kinematics of a particle lead to a geometric algebra of the
Evuocripean spaces of finite dimensionality, dealing with points and other kinds of
geometric objects. This geometric algebra describes the wave-mechanical type of spa-
tial location by means of linear combinations of the symbols corresponding to the points.
This EvcrLipean metric algebra may also be regarded as an extension of the classi-
cal mathematical analysis, of the theory of the separable Hiuerr space and of
the theory of the temperate distributions, in which continuity and other topological
properties play a minor part. The present metric algebra is isomorphic to the affine
algebra L, discussed in reference [2], which is obtained from the {V}, {U} algebra
of section I by the introduction of another generator {P} with the multiplication
rules {P)2 = (P}, {(V}{P} = 0, {P} {U} = 0. {P} describes a point, the introduction
of {P} corresponds to the passage from an algebra of the three-dimensional vector
space to an algebra of the three-dimensional affine space. The symbols of the point
P +-I7> are exp (— {V}) {P} exp ({V}) = {P} exp {(V)}. The Tayror series of 3 vari-
ables play a central réle in the affine algebra. They are replaced by the series of
Hgruirze functions in the metric algebra.

The metric algebra associated to the non-relativistic wave mechanics gives a new
kind of description of the Evcripean three-dimensional space, in which the linear
combinations of the symbols of the points constitute a linear space of infinite di-
mensionality. T'he properties of the symbols of the points in this algebra are therefore
different from those of the ordinary calculus of points. We showed in reference [3] that
the symbol {Q} of the point @ describes essentially the linear functional 1, such
that 1,[F] = F(Q). The description of the points by their A, is a fundamental fea-
ture of the quantal geometry. We met it already in section IV, in the calculus of
points associated to the quantized pseudo-scalar field. In the present algebra, the
elements S (Q} S~ obtained from the {@} by an inner automorphism, correspond-
ing to a suitable element S, have the same properties as the (¢}, even when they
do not describe points (the ,,suitable®“ S correspond to the unitary operators). Those
allowed automorphisms constitute a much larger growp than the group of the Evcrinean
displacements that characterizes the equivalence of the points in the ordinary picture
of the Euvcrivean space: the abstract group of the three-dimensional Evcripean dis-
placements s replaced by the abstmct group of the unitary tramsformations of the

Hingrrr space of the F (Q) wztk/ |7 (@) dQ < oo. This means that in the descrip-

tion of space given by the present algebra there are other kinds of geometric objects
with réles similar to that of the points. Such geometric objects are not considered
in the usual elementary form of the Evcripean geometry, but they are never-
theless Evcripean objects. In this connection it is necessary to recall that the con-
cept of geometrical object is not equivalent to that of set of points, even in ex-
tremely simple cases. Two essentially different geometric objects may be constituted
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by the same set of points. The set of the planes and the set of the straight lines
contain both all the points of space, but even their dimensionalities are different.

The Fouricr transformation plays a central part in the above algebra of the
Eucripean geometry. It is associated to the isomorphism of the linear spaces of
the contravariant and covariant vectors defined by the Evcripean metric, which
induces a unitary automorphism 4 — S; 4 S3' in the algebra. The elements
Sy (Q) Sz* describe the geometric objects corresponding to the points of the ,;momentum
space, whose ,,position‘‘ vectors are covariant vectors of the three-dimensional Evcrivean
space. This geometrization of the Fourier transformation is one of the most
interesting mathematical aspects of the quantal geometry.

The description of the points by the linear functionals 4,shows clearly that there
are also geometric objects corresponding to other kinds of linear functionals. 2,
is a linear functional associated to the Dmac symbolic function:

W[F] = [F(Q) 6@, Q) dQ".
The geometric objects corresponding to the linear functionals
oo oo
A[F] = [F(Q) v*@Q)dQ with [|yp*(@Q)]?dQ =

are particularly interesting, because of their relation with the quantal states of a
particle described by the wave functions v (Q). The symbol of the geometric object

corresponding to the linear functional 1 is {4} = f »¥*(@Q) (@) dQ. The {1} are there-

fore linear combinations of the symbols of the pomts

We shall not discuss here the quantal geometry corresponding to the non-relati-
vistic kinematics of the particles with spin 1/2. In this form of the quantal geometry,
the points appear bound to rectangular trihedrals. This follows from the well known
fact that the two-component spinors are associated to complex null vectors

I_;l + 1 IZ. The real vectors 171 and f72 are orthogonal and have the same length,

because (_171 + ¢ 172)2 =Vi—Vi+ 2'13-171 . 1—72 = 0. 171, 172 and T/'>1 A f7>2 define a
rectangular trihedral associated to the spinor.

VII

The relativistic quantum mechanics requires the introduction of quantized fields.
The quantized field formalisms are related to the geometry of the differentiable
manifolds, as is clearly shown by the discussion of section IV. We shall now dis-
cuss the geometrical interpretation of the algebra corresponding to the quantized
electromagnetic field.

We want to build a vector calculus for a three-dimensional differentiable mani-
fold M, not endowed with an affine connection nor a metric. The vectors are now
localized objects, so that we need to consider basic contravariant and covariant

vectors at each point P of M, Z (P) and ff(P). The comparison with the case of
the pseudo-scalar fields shows that a satisfactory analogue of the {7}, (U} algebra
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of section I is obtained by taking the following commutation rules for the symbols
<I,(P)y and <I’(P)) of the basic vectors at the point P

(<L, (P)>, <Tx(P")H] = 0y [<LI(P)y, <It(P")y] = 0, (16)
KL, (P), <T¥(P')] = 6% 6 (P, P')<1». ’ (17)

These commutation rules are obviously related to those of the potentials of a radiation
field, with the special choice of the gauge which renders A, = 0, M being taken as the
three-dimensional Euvcrrpean space. The <I,(P)) correspond to absorption operators
and the (I1(P)) to emission operators. The duality of the contravariant and covariant
vectors s reflected in that of the emission and absorption operators.

We shall now assume that our three-dimensional manifold M is embedded into
a four-dimensional space-time and we shall consider four-vector fields on our mani-
fold, instead of the three-vector fields. There are now four basic contravariant vec-
tors I,(P) and four basic covariant vectors I#(P), whose symbols satisfy commu-
tation rules similar to (16) and (17), the latin indices being replaced by greek indices
taking the values 0, 1, 2, 3. Let us now take M as a three-dimensional Evucripean
space a0 = const of the pseudo-Euvcripean space-time. The potentials of the quan-
tized electromagnetic field can be taken as follows:

400

A, (x) = @)y [ (exp (— i k,2%) (L, (k)> + exp (i ky 2%) g, <I* (£))) (2k,) A F (18)

with %, = |%| and
I, () = (2a)* [exp(—ik-7) I, (P) dF,
3 (19)
qe(E)y = (2 [exp (i k-7) ¥ (P) d%.

It is interesting to note that by taking k, = l/ 702-}- m? we do mot get the correct rela-
tivistic commutation rules for @ Proca field with neutral quanta of rest-mass m, since
[4,(x), 4,(2')] = ig,, d(x—a") (1). The electromagnetic field is therefore the only
spin 1 quantized field related in a natural way to the vector calculus on a space-like
manzfold.

The present calculus of vectors on a three-dimensional space-like manifold can
be extended by the introduction of a new generator 2, with the following multipli-

cation rules > =
A, (k)8R =0, QU= (k)y = 0, 022 = 0. (20)

0 describes the vacuwm state of the electromagnetic field. The introduction of £ corre-
sponds to the introduction of the new generator {P) in the {V}, {U} algebra. The
algebra of the 4, (z) and 2 deals also with the states of the quantized electro-
magnetic field. We showed in reference [3] that it leads naturally to the indefinite
metric of Guera. The geometrical meaning of 2 is not yet known.

We can also build directly a geometric algebra for the axial and polar vector
fields of a three-dimensional space, related to the operators for the components of
the electric and magnetic fields.
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VIII

The Spinors and the Sphere. The vectors and tensors are affine geometric objects,
whereas the spinors are objects of the metric geometry, since they describe the
flat manifolds contained in the null hypercone g,,x*x" = 0 [6]. In the physical
interesting cases of the EucrLipean three-dimensional space and the four-dimensional
MiNkowsKIan space-time the situation is particularly simple. Thus, in the case of
the ordinary space, we are led to the discussion of the complex null vectors, for
the flat manifolds of maximal dimensionality on the null cone are now complex

> > >
lines. The components of a null vector ¥V = V. +% Vi, can be expressed in terms
of the components u,, u, of a spinor %

Tieg@i—u), V=l@i+ud), VP=-muw  (21)

The spinors % and —u» correspond to the same T—/'> It is possible to associate to the
spinor % the rectangular trihedral whose edges are parallel to the three mutually

orthogonal real vectors f;re, I_/'>im ; T/:e A T—Zm [7]. This association depends on the choice
> =

of a screw-sense, which is required by the definition of the vector product Vi, A\ Vin.

Slnce | V,el = |V1m| as a consequence of the condltlon V2 = 0, the complex vector

v gives a free rectangular trihedral with a weight | Vre[ The correspondence between
the weighied rectangular trihedrals, with a given screw-orientation, and the two com-
ponent spinors can be rendered one to one by giving a stgn to the weight of the trihedral.
The calculus of the two-component spinors is therefore a calculus of weighted
screw-oriented rectangular trihedrals with the same screw-sense [3]. The existence
of two opposite screw-senses of the trikedrals accounts for that of the two kinds of two-
component spinors w and v.

The simplest metric object is the vector of length unity, rather than the rect-
angle trihedral. A unit vector W can be conveniently described by a complex number

= (W 4 ¢ W2)/(1 — W3), the W’ denoting orthogonal components. w is the com-
plex number associated to the point of the Riemax~ sphere of position vector W.
It is well known that any rotation around the centre of the sphere induces a linear
fractionary transformation w’ = (¢ w + B)/(y w + 0) with a unitary unimodular
ap
y 0
vi = av, + Py and vy = y v, + 0 v,. The reflection with respect to the a! a3 plane
transforms w into w*. w* is the ratio of the two components of a spinor w.

The sphere is a quadric with two conjugate complex systems of rulings. The equa-
tions of the two rulings through the point defined by w are

matrix ( ) and conversely. w is the ratio of the two components of a spinor v, for

2t + 1 a? = w(l — ad), w(at — %) =1 4 a?, (I)

2t — ¢ 2% = w¥(l — a%), w*(al+s2?) =1+ asd. (I1)

It is readily seen that the line defined by the equations (II) is parallel to thenull
vector V defined by (21), with w* = u,/u,. The line (I) is of course parallel to the
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complex conjugate vector V*. The two kinds of spinors v and u are associated to the
two systems of rulings of the Riemany sphere.

The consideration of the two systems of rulings of the sphere requires obviously
the introduction of the real and complex points of the sphere. The two rulings
through a complex point of the sphere have the following equations

v (2l — ¢ 2?) = vy(1l + ), va(2! + ¢ 22) = v, (1 — 28), ()
Uy (2! + ¢ 2%) = uy (1 + ), Ug (2 — ¢ 22) = u, (1 — 28). (IT)
The four-component spinor is actually a pair », # of two-component spinors of
different kinds. It follows from equations (I’) and (II') that a four-component spinor

defines a pair of null vectors parallel to the two rulings through a complex point of
the Rizvaxy sphere. It is ¥ = «* in the case of a real point.

Let us take now an arbitrary vector ﬁ’), instead of a unit vector. The metric
allows to define || and thus to obtain the complex number

(WL — i)
w = _—_3— .
(W] — w3)

w depends only on the direction and sense of ﬁ;, but not on its length. It s clear
that we have a metric calculus of directions of the three-dimensional space given by
the complex numbers, which underlies the spinor calculus.

The complex sphere is invariant for complex rotations around the origin. These
rotations constitute a continuous group depending on six real parameters, isomorphic
to the proper Lorentz group. They are obtained by means of the transformations
w' = (aw + B)/(yw + J), with a general unimodular matrix. The complex rota-
tions exchange the rulings of each system, separately. This corresponds to the well
known fact that the components of a two-component spinor undergo a linear trans-
formation, not only for real spatial rotations, but also for all the proper LorexTz
transformations. On the other hand, a reflection with respect to the a! 23 plane
exchanges the two systems of rulings, as shown by equations (I') and (II"). This
corresponds to the exchange of the two kinds of spinors.

We had to consider both real and complex vectors of the three-dimensional
space in the above discussion. It is important to note that the complex vectors on the
rulings of the sphere are meither polar mor axial : the real part is polar and the ima-
ginary part axial in the case of the vector v defined by equations (21), which is of the
same kind as the complex vector Ef}’>+ i H built with the fields of a plane electromagnetic
wave. The vectors T/'),e and T/')m N V>im are therefore polar, whereas T;im is axial. The
imaginary unity is used here in the same way as the dual unity e, with ¢* = 0, in
the theory of the motors, in order to combine a polar vector and an axial one into
a single complex vector.

The isomorphism between the complex rotation group and the proper LorENTZ
group is certainly a most remarkable property of the physical universe. It could
not occur for any dimensionality different from 3. The above relation between the com-
plex mumbers and the directions of space is another remarkable property of the three-
dimensional space. The possibility of describing spatial directions by complex numbers w
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tial being perhaps the isomorphism of its complex rotation group with the proper
Lorentz group and the fact that both the rotation and the translation groups
depend on the same number of parameters. The former property renders the system
of the complex numbers an algebra of the directions, as was explained in section
VIII, the latter gives a special réle to the dual numbers. The tridimensionality of
space gives a distinguished status to the straight line, which is projectively self-dual.
On the other hand, it leads to the remarkable isomorphism between the projective
line-geometry and the metric sphere-geometry discovered by Sorrus Lik. 4 #ruly
satisfactory integration of physics and geometry must give a central part to the charac-
teristic properties of the tridimensional Evcripean space.
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