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INTRODUCTION

1. ‘The basic aim of the vector calculus is the construction of
an algorithm adequate to deal with a certain kind of geometric objects. The
ordinary vector calculus is an algorithm for the metric euclidean geometry
of the three-dimensional space. Its extension to the metric euclidian geometry
of spaces of dimensionality higher than three requires already substantial
modifications. Other well known kinds of vertor calculus are the quaternion
algebra and the Grassmann algebras, which can both be extended to n-dimen-
sional spaces. The extension of the quaternion algebra leads to the important
Clifford algebras, which are a calculus for the metric geometry of n-dimensional
euclidian and pseudo-euclidian spaces. The Grassmann algebras are of two
different kinds, according to the commutative or anticommutative nature of
the product of the vectors, and give algorithms for the affine geometry of
n-dimensional spaces. Grassmann developed also a point-calculus, which
contains the vector calculus and is applicable to the projective feometry of
n-dimensional spaces.

In the present paper we shall discuss in general lines some ideas
on the geometric calculus which wili be developed in more detail in the
followinf papers of this series.*) We shall examine different kinds of geometric
calculi associated to different kinds of geometry: affine, projective, conformal,
euclidian and pseudo-euclidian, unitary and hermitian, symplectic, non-eucli-
dian. All those geometries are associated to linear groups. Our methods consist
essentially in the associaticn of algebras to some types of linear groups, algebras
in the sense of systems of hypercomplex numbers. Those algebras have a
finite number of linearly independent elements for some of the linear groups
and infinite numbers of linearly independent elements for other groups, when
the underlying spaces are of finite dimensionality. We shall also consider
spaces of infinite dimensionality, the corresponding algebras having always
an infinity of linearly independent elements. Most of the algebras we shall
consider exist for spaces with n dimensions, both for odd an even n’s, although
some of them be associated with symplectic groups. The various algebras

#) The main results of this series of papers were given in a lecture at the Recife
meeting of the Sociedade Brasileira para o Progresso da Ciéncia the 8 july 1955.



12 MARIO SCHONBERG

can be defined over fields of characteristic zero, but we shall consider them
only over the real or complex numbers, because our main interest is the
application of those geometric algebras to physical theories.

THE EXTENDED GRASSMANN ALGEBRAS G, AND L,

2. The contravariant and covariant vectors of the n-dimensional
affine space A, will be denoted by V’s and U’s, respectively, and their
components with respect to the basis of the I;’s and F’s by vi’s and Ui’s:
V=ViIL, U= U; B. The I;’s and [i’s are two reciprocal systems of vectors.
The invariant U; VI will be denoted by <U, V). In the algebra G, the gene-
rators are the elements (V), (U) associated to the V’s and U’s with
the multiplication rules

W V)+ (V) (V) =0, (U0 +U)(U) =0, (U)(V) + (V) (V) =<UV> 16, (1)
G, is assumed to be an associative algebra with a unity 1g, . Similarly
L, is an associative algebra with a unity 1;, generated by the elements
{V; and {U} with the multiplication rules
(vi{v) = {v}{v)=o, {u}{v}-{U}{U}=0,
{Uv}-{vl{u}=<uv>1, @
The numbers of the basic field will be denoted by c’s. We shall assume that
EeV)=2c(V),EcW)=2cU);{ZcV}=2c{V}, {zcU}=2c{U} @)
Hence
M) = V@), (0) =u;@®) ; {v} =V {5} , (U} = U; {F) ®)
It follows from (1) and (2) that

(I) (1) + (L) () = 0, (O){I) + @) (T) =0, @) M) + @) F) =6k 1s, (@)
()8}~ (8} (1) = o, (0} {24} ~ {14} {8} =5, -
(F){L) — (L)) = ol (5)
By taking
o = {L},p; = (277" n{F) (6)
equations (5) become the Heisenberg commutation rules for the coordinate
and momentum operators of a quantum-mechanical system with n degrees
of freedom. L, over the complex numbers is equivalent to the Heisenberg
algebra of the p’s and q’s of a system with n degrees of freedom.
A basis of G, is constituted by the 222 elements (I,)!...(L,)™ (I?)s=...
(I')'1the exponents r,s taking the values 0 and 1. A basis of L, is constituted
by the elements {Il}”... {I_]}r“{ll}“ {I’}’“, Tois =u054502 . Ll G,
is of the order 222, L, of infinite order. The general forms of the elements
I' of G, and A of L, are

[FSREES .1 > 3
= = (pa)™" Gk (L) .. (L) (@) ... (1) (7
P, q
0,..,® r -
A= 2z (pla) 7 (a!...a) (byl.. . ba) Gy ). AL ) {1} (®)
P,q

An. da Acad. Brasileira de Ciéncias.



GRASSMANN AND CLIFFORD ALGEBRAS 13

a, denoting the number of j’s equal to the integer r and b, the number of
k’s equal to r.

The coefficients C in equations (7) and (8) transforms as the
components of tensors for a change of the basic vectors I;. In the case of
(7) the tensors are antisymmetric with respect to the j’s and k’s, separately,
and symmetric in the case of (8). G, is a calculus for the affine geometric
objects described by sets of antisymmetric tensors, L, a calculus for the
affine geometric objects described by sets of symmetric tensors. In order
to get a calculus for the affine objects described by tensors of any kind, it
suffices to take the direct product G, X L., which is an algebra generated
by the (I)’s and {I}’s satisfying the multiplication rules (4) — (5) with
the identification of the unities 1g, and 1, Z with the unity of the product
algebra, any(I) being taken as commutable with any {I} 3

The anticommutative Grassmann algebra of the contravariant vectors
is the sub-algebra G}, of G, generated by 1g, and the (I;)’s. The comutative
Grassmann algebra of the contravariant vectors is the sub-algebra L. of L,
generated by 1;, and the {Ij}’s. Our algebras G, and L, are therefore
extensions of the two kinds of Grassmann algebras of contravariant vectors.
G, X L, may be considered as the complete affine vector algebra.

Let TJ!‘ be a tensor of determinant |T| 20 TJ!‘ defines a central-
affine transformation of A,. We shall associate to Ty the element (T) of G,

and the element { T} of L,
(T) = TL (L) @) {T} = {1} {1 (9)
. The central-affinity T transforms V into VT and U into UT: V™ =
=T Ve ,U,-T = Tjk Uy , T}' T}If = T: T;' = 6}‘- T is the inverse of T. We have

V) =[®,WWH =L@ ]: (v7}=[{z}.{v}].{v"}=[{u}. {7} ] q0)

The square bracket denotes the commutator, as usual. It is well known that

there are always 7’s such that T =¢", T=¢ '. It follows from (10) that

(VF) = exp (7) (V) exp (=), (U”) = exp (7) (U) exp (—17) (11)

{VT} = exp {r} {V} exp { — r} ; {UT} = exp (T} {U} exp { —r} (12)

(T) and {r} being defined in the same way as (T) and {T}, respectively.

The (VT)'s and (UT)’s can be taken as generators of G,, instead of the

corresponding (V)’s and (U)’s. Thus we get an automorphism I'—>TI'T of G, .

In a similar way we define an automorphism A —> AT of L_. It follows from
equations (11)-(12) that

il =exp(r)T exp(—7) , AT =exp{-r}A exp{—'r}‘ (13)

The central-affinities of A, induce inner automorphisms in G, and L, .

The metric geometry is subordinated to the affine geometry. We

may expect the affine algebra G, to contain metric algebras as sub-algebras.

v. 28 n.° 1, 31 de margco de 1956.



14 MARIO SCHONBERG

It is indeed so, as we shall now see. By means of the metric tensor &
we build the units ’Ygi) of two Clifford algebras C; and C;*: ’Y;i\'=(lj)igjk (I

() () )y () (RITH(=) (=)D
WOV + v = £ 2gule, > W Vet =0 (14)

The 7§+)’s generate a Clifford algebra C. corresponding to the metric

ik x x°. The 7§_) ’s generate a Clifford algebra C,*° corresponding to the

metric — gj X’ x*. Since the 7§+)’s and ’Y,-(")

pendent generators of Gy, it follows from (14) that G, is the Clifford algebra

's are a set of linearly inde-

of the 2n-dimensional pseudo-euclidian space with the metric g (xj x* —
— gt gtk )’ whose canonical form has n positive and n negative squares
for any choise of gj. .

The algebra of the Dirac ~-matrices is isomorphic to the C; of
the space-time. The algebra C4 X L, of the quantities of the relativistic
quantum mechanics of the electron is therefore a sub-algebra of the affine
algebra G, X L, of the space-time. We shall prove in the paper II of this
series that G, X L, contains also as sub-algebras the algebras of the relativistic
quantum mechanics of the particles with spins 0 and 1, because G, has
sub-algebras of the Duffin-Kemmer type.

In the case of even n, there are antisymmetric tensors fj; of deter-
minant |[f| > 0. We shall introduce an algebra K, with a unity 1k,
generated by the elements )\; with the multiplication rule [\;, A\, | = 2fj 1g,,
[f| 0. K, is the analogue of C, for the group of linear transformations
T¢ leaving invariant the bilinear form fj;, x’; xl{, the symplectic group asso-
ciated to fj, in the same way as the g-orthogonal group of the linear

transformations T, to the symmetric bilinear form g;j, x’; x5 . The 2n elements

of L, \® = {Ij} + f {Ik} are linearly independent and

P AP] = + 26,1, P ] =0 (15)
The )\§+)'S generate a symplectic algebra Kf1 associated to fj.. The )\Jg—)’s
generate a symplectic algebra K, T associated to — {5 . It follows from
the commutability of the two kinds of )\'s that L., is the direct product
of two K,'s, one associated to f;. and the other to _ fj,, when n is even.
There is a corresponding theorem for G, and the Clifford algebras. Let us
choose the I;’s in such a way that g = ¢; 6,1k, &5 = £ 1, as it is always

possible. The element @ = 'Y§+)---’YE,+)‘Y§_) ---7{7) anticommutes with all the

Vj(i)’s. The w’Y,‘_)' s generate a Clifford algebra C§ associated to gj, Since all

the elements of 8% and (% are commutable, G  is the direct product of
two C,'s associated to the same g;. both for even and odd n’s.

The symplectic groups have only one family of transformations, all
of determinant 1. The g-orthogonal groups have transformations of deter-
minant = 1, each of the two families containing two different sub-families

An. da Acad. Brasileira de Ciéncias.
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when g;. xJ x*¥ is not definite. All the T¢s can be expressed as exponentials
exp r.,r. being of the nature of an infinitesimal transformation: P f =
P 7¢s 7p g f,j "hk

=1, fy;. The T,'s can also be expressed as exponentials exp 7, but 7,

can only be chosen of the nature of an infinitesima transformation for the
T,s of determinant 1 of the subfamily containing the unity transformation

of AV,.A:T;J- gk = —-‘r:,k gn;. Therefore we can define a symmetric tensor t*
by the condition t}"fy, = 74, for all Ty’s and an antisymmetric tensor ték
by the condition t’gh gnk = Ty,i for the above mentioned T,’s, the proper

. . : 1 5 e
g-rotations. It is easily seen that {Tf} G t’fk(AEH )\L+) = )\,( / )\i{ )) for all

1

T's and for the proper g-rotations( 'rg) T tfgk(vﬁ) v — 'yg—) y§:>) . Hence
1 &
B (Dl k(4 + 1 e o &
SEAPSE =1 sP mew( £ ) an

Equations (17) are valid for proper g-rotations of spaces of even
and odd dimensionality. It is well known that in the case of spaces of even
dimensionality all the g-orthogonal transformations induce inner automor-
phisms in the corresponding Clifford algebra. This can be shown by the
consideration of the g-reflections, i.e. g-orthogonal transformations leavinf
invariant the vectors of a hyperplane. We shall discuss this point in the
next paper of the series. The above results show that the behaviour of G,
with respect to the g-orthogonal transformations is similar to that of L,
with respect to the sympletic transformations. We shall prove in the next
section that L, is the symplectic algebra of a 2n-dimensional space, as
G, is the Clifford algebra of this space.

The relation between L, and the Heisenberg commutation rules
shows that the symplectic group plays a fundamental role in nature. In
recent years the importance of the symplectic group in the classical mechanics
has been more clearly understood. The above results show its significance
for the quantum kinematics. We shall see in the following papers of the
series its importance in the electromagnetism. In the case of the space-time,
a uniform electromagnetic field such that E-H = 0 defines a fj. with
|f] ¢ 0. There is a K, associated to any such field.

THE 2,-DIMENSIONAL SPACE ASSOCIATED TO A.

3. We shall now consider the 2n-dimensional linear space S,
which is the direct sum of the linear spaces of the v’s and wu's of A,.
The vectors of S,, will be denoted by W’s. We shall assume that the
components W' , ... | W? are Vi-like and the components W2—1 , . .  W2n

v. 28 n.°o 1, 31 de marco de 1956.
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Ujlike. Thus the W’s whose components W"*J are nil can be identified
with the V’s and the W’s whose components Wi/ are nil with the U’s.
Any W is then a sum V + U. When A, is the configuration space of a
dynamical system with n degrees of freedom, its phase-space is analogous
to S,,. We shall call S,, the phase-space associated to Ax.

There is a natural definition of the inner product of two W's,

which gives a pseudo-euclidian metric in S, : (W, W), = —;—(( U,,V,>+

+ <U2.,V1 >), with W =TU+ V. Thereis also a natural definition of the
symplectic product of two W’s, which gives a sympletic geometry in Sy,

(Wy, Wy)_ = %((UI,V2> —<U,,V,>) We shall now prove that Gn is the

C,n of the symplectic geometry of S,, defined by (W, W;), and L, the Ky,
of the symplectic geometry of S,,defined by (W, W, )_. It is well known
that in a C, there is an element 7Yy associated to each contravariant vector
V:y, = Viy;. The y;'s are the elements of C, associated to the Ij’s and their
commutation rule is a particular case of the general commutation rule
Vv, Yvo + Yvo Vv, = 28k le V;‘ 1c,. In a similar way in K, we shall associate
to each V the element Ay = Vi);, the commutation rule of the \y’s being
[)‘V1’>‘V2] = 2 fj Vi VIZ‘ lg, - In the case of S,,, we have for the above
defined inner products and symplectic products Tw, I'w, + T'w, I'w, =
KUy, V2> +<Uz , V1) 1c,, and [Aw, 5 Aw,] = KUy, V2> =<Us , Vid) Ig,,
the first order elements of C,, and K,. being denoted by I'w’s and Aw’s,
respectively. By taking 1c,, = lg, and 1g,, = 1p,, I'w = (U) + (V) and Aw =
={U} + {V} we can identify C,, with G, and K,, with Ly

We can now apply to G, and L, the fundamental theorems on
the inner automorphisms induced in the Clifford and symplectic algebras
by the g-orthogonal and symplectic linear transformations, because they are a
C,. and a K,,, respectively. The linear transformations of the 2n variables

Lyesn
U;, Vi leaving invariant the quadratic form U; Vi = —i— z {(Uj + v)? —
]
—(U; —Vj)z} induce inner automorphisms in G,. The linear transformations
of the 2n variables U; , Vi leaving invariant the alternate bilinear form
U,, jij —U,, jV’; induce inner automorphisms in L,. Thus we get a group
of automorphisms of G, depending on n(2n — 1) parameters and a group
of automorphisms of L, depending on n(2n - 1) parameters. Each of

those groups contains as a sub-group the full linear group in n variables,
i.e. the central-affine group of A, , because these central-affine transfor-

mations leave invariant { U;,V, > and ¢ U,, Vi >.

The theory of the geometric algebras G, and L, leads to a
remarkable extension of the affine geometry. The linear spaces of the U’s
and V’s are totally isotropic sub-spaces of S,, with respect to the metric

An. da Acad. Brasileira de Ciéncias.
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defined by the inner product (W;,W,),, because (V,,V,;). =0 and (U;,U,)+=0;
these totally isotropic spaces are of the maximal dimension. The linear
spaces of the [’s and V’s are also totally isotropic sub-spaces of the
maximal dimension with respect the symplectic product (W,;,W,)_. Let us
introduce the linear operator of S,, defined by the conditions 4V=V,§U=—T.
We have (W;,W,)_=(W;,0W,). . In order that a linear transforma-
tion 7 of S,, leave invariant both the inner and symplectic products it
must be commutable with ¢, because (W, ,07W;). = (W;, rW;y)_ =
=(r"1W,, W)_ =(+"1W; ,0W;); =(W,, 76W,), forany W's.
Therefore r transforms U’s into U’s and V’s into V’s and, since it leaves
invariant the inner product (W , W), = (U, V)it is equivalent to a central-
-affine transformation of A,. The only transformations common to the abofe
pseudo-orthogonal and symplectic groups of S,. are the central-affine
transformations of A, acting on the U and V parts of the W’'s. Although
we have found more general groups inducing inner automorphisms in G,
and L,, they do not lead to a group larger than the central-affine of A,
inducing inner automorphisms in the algebra G, X L,.

The Clifford algebra C,, over the real numbers associated to a
quadratic form with n positive and n negative squares is a total metric
algebra. In the next paper of this series we shall give the expressions of
the units of the total matric algebra C,, equivalent to G, - G, over a
field of characteristic = 2 is equivalent to the algebra of all the 2» X 2@
matrices over the same field. The group of the inner automorphisms of Gy
is isomorphic to the projective group of the (2 —1) dimensional over the
same field.

It is now generally accepted that in the natural system of units of
physics the Planck constant h must be taken dimensionless with the value
2% . Thus the momentum has the dimension of the inverse of a length,
i.e. the natural dimension of the covariant vectors of space-time. The Sg
associated to the space-time can be identified with the relativistic phase-space
of a particle. The pseudo-orthogonal and symplectic groups of this Sg are
likely to be important physical groups. It is interesting to notice that the
coefficients of the general transformations of those groups mixing the Uj's
and Vi's must involve some constant with the dimension of a length, because
the Vi's have the dimension of a length and the Ul’s that of the inverse
of a length. Those groups seem therefore to be related to the theory of the
elementary length,

The S,, associated to the configuration space of a dynamical system
with n degrees of freedom can be identified with its non-relativistic phase-
space, by giving to the momentum the dimension of the inverse of a length.
In this case the symplectic group of §,, associated to L, is simply that
associated to the differential element of the Poincaré integral-invariant

—_—2 — ». 28 no 1, 31 de marco de 1956,
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1

of the second order f 2 (d;pjd;q; —d2p;d; q;), as a bilinear form in
j

the vectors (d; p;, d; q;) and (d, p; ,d,q;). The Heisenberg algebra of the

coordinate and momentum operators of a dynamical system with n degrees

of freedom is the symplectic algebra ‘associated to the Poincaré bilinear

alternate form 2 (dypjdaq; —d;p;diq;). The motion of the quantal

J
system corresponds to the transformation A—> exp(-itH) A exp(itH) of

the quantities A of the system, H being the quantal time-independent hamil-
tonian and t the time. The theofy of the motion of the quantal system is
therefore included in the theory of the inner automorphisms of L,. The group
of the inner automorphisms of L, is the projective group of a space of
infinite dimensionality, the points of this space being the states of the dyna-

mical system.

In the Schrédinger formalism, the momenta p; are taken as the
differential operators — iD;,D; denoting the partial derivative with respect
to the numerical variable q;- This formalism is based on a representation of
L, in a linear space of indefinitely derivable functions ¢(q1,...,qn), in
which {I,-} corresponds to the linear transformation ¢ —>q; ¢ and {Ij}
to the linear transformation y—> —iD;y. Thus we see that L, is closely
related to the differential calculus of the functions of domain A,. L, is an
algebra underlying differential calculus of the functions of n variables. We get
in this way a remarkable relation between the differential calculus and the
geometric calculus of the affine objects described by symmetric tensors.

The above results show that there are deep relations between the
symplectic geometry of a 2n-dimensional space and the differential calculus
of functions of n-variables. The theory of K,, or L, does not depend on
the use of any special representation. Moreover L, can be taken over fields
not possessing properties of continuity, over the rational numbers for instance.
Thus we see that the theory of K,, leads to a generalization of the differential
calculus. The relations of the commutative Grassmann algebra with analysis
were indicated by Grassmann in the Ausdehnungslehre of 1862. The intro-
duction of L, and of the modern algebric methods allows a considerable
extension of the scope of Grassmann’s ideas and shows new relations between
geometry and analysis. Thus the very simple symplectic transformation of
Sin U—>V,V—> — U corresponds to the inner automorphism of L, defined
by the relations {Ij} ——+{IJ-} ; {[j } —>— {Ii}. The theory of this inner automor-
phism of L, is obviously an algebrization and geometrization of the theory

of the Fourier and Laplace transformations.

It is interesting to remark that the symmetry of the inner product
(W,,W,). leads to the sign + in the commutation rules of the (W)'s and the

An. da Acad. Brastleira de Ciéncias.
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antisymmetry of the symplectic product to the sign — in the commutation

rules of the {W}'s The symmetric nature of the metric bilinear form of S,,
renders its C,, the algebra of the geometric objects of A, described by
antisymmetric tensors and the antisymmetric nature of the symplectic bilinear
form of S,, renders its K, the algebra of the geometric objects of A,
described by symmetric tensors.

The relations between the extension of the Grassmann geometric
calculus and the quantum mechanics are remarkable and show that the pro-
perties of matter correspond very closely to the geometry of the space-time
continuum, even in the atomic domain. This will be shown in more detail
in the following papers of the series. Our considerations refer to flat spaces,
which are tangent spaces of the curved space-time. The extension of the
present theory to curved spaces allows to include the quantum dynamics in
a geometric picture, the present results refering only to the quantum kinematics.

SUMMARY

An extension of the vector algebras of affine spaces is discussed. The extension
of the Grassmann algebra of contravariant vectors with anticommutative product by the
introduction of the covariant vectors of the affine n-dimensional space leads to an algebra
G. isomorphic to a Clifford algebra of a space with twice the number of dimensions.
A similar extension of the Grassmann algebra with commutative product of contravariant
vectors leads to an algebra L. closely related to the differential calculus. An algebra Ka
associated to the sympletic group of a space of even dimensionality and analogous to
the Clifford algebra is introduced. L. is a symplectic algebra K., of a space with twice
the number of dimensions of the basic affine space. G. contains as sub-algebras the
Clifford algebras corresponding to all the euclidian and pseudo-euclidian metrics. L. over
the complex numbers is equivalent to the algebra of the position and momentum operators
of a quantum-mechanical system with n degrees of freedom. Remarkable relations between
the quantum kinematics and the geometry of the affine spaces are discussed. The spin-like
quantal variables are associated to geometric objects described by anti-symmetric tensors
and to the metric geometry. The position and momentum quantal variables are associated
to geometric objects described by symmetric tensors and to the symplectic geometry.

v. 28 no 1, 31 de margco de 1956.



