4“

M.. SCHONBERG - et
14955, 19 Aprile

)
Il Nuorvo Cimento

1. 543-556

s o Voo U U

g NSNS o W,

—a

P Nrr——— e

Faculdade de Filosofia, Ciencias e Letras da Universidade de -Sao Paulo, Brasil

Vortex Motions of the Madelung Fluid.

M. SCHONBERG
(ricevuto il 3 Gennaio 1955)

Summary. — The general motions of the continuous medium (Madelung’
fluid), whose irrotational motions are described by the Schridinger equat-
ion, are discussed. It is shown that many of the basic theorems of the
vortex motions of the inviscid barotropic fluids are also valid for the
Madelung fluid. A detailed discussion of the Clebsch parameters is given,
It is shown that there is a special type of steady motions, similar to the
Beltrami motions in which the streamlines coincide with the vortex-lines,
which corresponds to a close generalization of the ordinary stationary states.
The guantization of the vortex-tubes is discussed. Examples of Beltrami
and discontinuous motions of the Madelung fluid are given. It iz shown
that the general motions of the Madelung fluid can also be physically
interpreted in terms of the ordinary quantal states of a particle.

1. — Introduction.

MADELUNG () showed that the Schrédinger equation for a particle is equi-
valent to a set of equations that describe a flow in space. Let us denote
the wave function of a particle of mass m and charge ¢ moving in the
electromagnetic field described by the potentials 4,, 4. It follows from the
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Sehradinger equation
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E. MADBLUNG: Zeils. f. Phys., 40, 332 (1926).
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that the amplitude R and the phase S/% of ¥ satisfy the equations
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Let us introduce the velocity v and the mass density mo
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&

(5) A l(f‘s-—fA).

mi\ox C

It follows from (2) and (3) that

(6) m (% Aiphs )v = (2 (E e E;‘;H) - k2 'J[{.

2m ox R
(E = electric field: H = magnetic field)

(1) :—t” + div (gv) = 0.

Equation (6) has the form of the Euler equation of motion of a special kind
of charged fluid medium of charge density eo, the velocity being v and the
spatial components of the stress tensor having the values

h* oR oOR h*
A Zua | T O o=
m 0x, 0Ty 4m

- Ao

(8) T = mevvy -+

Indeed, since the density of mechanical momentum is
(9) G = mov

the equation (6) is equivalent to the following

(10) POl e ,:Q(E»”,f Hj,

ct &

div 7" denoting the divergence of the three-dimensional teusor deflned by (8).
Equation (7) is the continuity equation of the Madelung fluid,
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It follows from the first equation (5) that the vorticity ¢ of the motion
of the Madelung fluid associated to the Schrodinger equation (1) satisfies the
condition i

e
1 = 1ot v =—
a1 G 100 me

In the absence of magnetic fields € = 0 and the motions associated to the
equation (1) are irrotational. We shall call the motions satisfying the con-
dition (11) quasi-irrotational. TAKABAYASHI (2) called the attention to the
fact that the equations (6) and (7), in the absence of magnetic fields, are
valid both for the rotational and irrotational motions of the Madelung fluid
and may be regarded as a generalization of the Schrodinger equation (1).
Independently, we remarked that (6) and (7) generalize the Schrodinger equat-
ion (1) and introduced also the distinction between quasi-irrotational and general
motions of the Madelung fluid. 7The presence or absence of vorticity is not the
fundamental fact, since the Sechridinger equation may be applicable even when
there is vorticity, provided the motion be quasi-irrotational. This is shown even
clearver by the extension of the Madelung hydrodynamical model to particles with
spin-(*): in the case of a particle with spin there is vorticity, even in the absence
of magnetic fields.

We have shown () that it is possible to generalize the wave equations of
the quantum mechanics by a suitable modification of the usual variational
principles.  We started from a generalized form of the classical Hamilton-
Jacobi theory and from a new kind of classical variational principle associated
to that generalization. In the particular case of the non relativistic wave
equation for a spinless particle, our generalization can also be derived from
the analysis of the general motions of the Madelung fluid, as will be shown
in section 3. The theory of reference () was further extended (3) to all the
field formalisms admitting the gauge-invariance of the first kind. We showed
in that paper that the generalization procedure amounts to replace certain
integrable field quantities by non integrable quantities, whose differences of
values at infinitesimally close points in space-time are definite. In the part-
icular case of the non relativistic Schrodinger equation, the phase 8 hecomes
a non integrable quantity in the general vortex motion of the Madelung fluid.

We showed in reference (%) that the general theorems on the vortex motions

(%) T. TARABAYASHI: Prog. Theor. Phys., 9, 187 (1953).

(*) M. ScuoNBeERG: Nuwovo Cimento, 12, 103 (1954); 1b. Bouwm, R. ScriLner and
J..TromNo: Suppl. Nuovo Cimento, 1, 48 (1955).

(*) M. SCHONBERG: Nuovo Cimento, 11, 674 (1954).

(®) M. SCHONBERG: Nuovo Cimento, 12, 649 (1954).
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~of the inviscid barotropic fluids under the action of conservative forces have

their analogues in the generalization of the ordinary gauge-invariant field
formalisms, by the introduction of non integrable quantities, the vorticity
being replaced by a non-integrability vector v. The lines of force of the n-field
play the part of the vortex-lines of the ordinary hydrodynamics. The z-tubes
formed by those #-lines have a time independent strength, the strength being
defined as the flux of the vector n through any section of the tube. In the
case of the vortex motions of the Madelung fluid we have

s
(12) n =rotu. u=mv +-4.

C
There is a circulation theorem for the vector u

(13) "u'f)x::’.u,,-éx,,.
;

(' being a closed fluid line formed. at the time ¢, by the fluid elements lying
at the time 0 on the closed curve C: x, and u, being the position and u-vectors
at the time 0. We shall extend the ordinary hydrodynamical vortex theorems
to the Madelung fluid in section 2.

The importance of the Clebsch parameters for the generalization of the
gauge-invariant field theories was shown in references (*) and (5). The pro-
perties of the Clebsch parameters will be discussed in detail in section 8.
The first equation (5) iS replaced by

(1-4) = _— A

| N LOLTRe
m\eox ‘ex ¢ )

in the case of a general motion. S, 7 and p are the C(lebsch parameters. It
will be shown in section 4 that the same distribution of velocities is also des-
eribed by the parameters 8, 2’ and g’ defined by the equations

i G g y
l f s L L E T s
O

{15) cx ‘x

I ;\”.:': N 4 1' - I"(i) g

[' being an arbitrary function of t, w, p' and F an arbitrary function of f.
The equations of motion in terms of the C(lebsch parameters ave

oy cu c Ky i ) oK
T T T S e = (3)ae% = el
cl cx oA ot ‘x I g
(16 A N
) oS oy 1 (8N Ll ¢ 2 2 AR "
o i == 4 A A Ay -~ 4L s
ot ot 2m\ ox rx () 2m R

\

(K function of ¢, 4, u).
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K(t, 4, n) being an arbitrary function. The simplest choice K= 0 renders the
parameters 4 and u constants of the motion. We shall always assume that 4
and g are chosen as constants of the motion and K= 0. We shall extend
the equntioﬁ (4) to the case of the general motions of the fluid. Thus we get
the generalized Schrodinger equation

oy r (@ ¢ ou\? oI
C J
i/,_—:_—(-. ! TR L o L T («A., 128y
ct 2m\1 cx ¢ cx ct
(17) b N :
cl aA o cu
— t+v-— =0, ,\—7*17'7'“::“.
ct cx ct ox

When 4 and p are taken as constants of the motion, the function /" in the
transformation (15) is to be taken also as time independent. It will be shown
in section 6 that ‘

J G ou ol o' = AI' 4. "ol aou
(18) A e — R s e e T SRR T) -
ct ct ct ct di - ot o ot )

It is convenient to take I'= 0 in the second equation (15) in order to have

A
8l

(19) Y'—= ¥ exp
1

The form of the first equation (17) shows taht — (¢/e)A(cu/cx) and
(1/e)A(0p/ot) may be regarded as the potentials of a field. This point of view
allows us to consider the change of the Clebsch parameters as a change of
the gauge of those potentials. Equations (15), (18) and (19) correspond pre-
cisely t0o a change of the gauge of the potentials such that the new potentials
be also expressible in terms of Clebsch parameters 4, x'. This point will be
discussed in more detail in section 6.

At any instant of time ¢ the Madelung fluid will have a quasi-irrotational
part occupying a region 2, and a region where n =40, if the two parts do exist
at a given instant of time ,. In the region 2,, 2 and x can be taken as uil,
but the funection S will not be single-valued in general, unless £, is simply
connected. The circulation of the vector u along a closed path € within £,
is a linear combination with integer coefficients p, of the cyclic constants A,

n

(20) ’un()x == 3 mAy,

4 =1

&
n -1 being the order of connectivity of Q,. The ovder of connectivity and
the cyclic constants are invariants of the motion, as a consequence of the
cireulation theorem (13). In order that the wave function ¥ be single-valued the
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strengthes of the a-tubes must be integral multiples of h. This point will be
discussed in section 5.

The generalized Schrodinger equation is discussed in section 6. It is shown
that it can be obtained from a wvariational principle of the same type as that
for the ordinary Schriodinger equation. The new principle is obtained from
the ordinary one by introducing the extra potentials — (¢/e)A(ou/ox) and
(1/e)A(cu/ct), 4 and u being variated as independent quantities. It is shown
that, besides the gauge-transformations corresponding to the different possible
choices of the Clebsch parameters, the equations (17) admit also the trans-
formation
(21) Y'=0¥, A=2, w'=u (C= arbitrary constant).

i

This invariance results from the fact that the quantum potential is invariant
for the substitution of R by CR.

The steady motions of the Madelung fluid are discussed in section 7. In
those motions
A5 " mv* 1 f* AR
Z2 —- + eAdyg—— A
( 2 LG B AL
is a constant of the motion of the elements of the fluid (Bernoulli theorem for
the Madelung fluid). The value of W is not the same for all the streamlines,
unless '

(23) v/n=0 (everywhere).

The steady motions satisfying the condition (23) correspond to thoge discussed
by BBLTRAMI (°) and STBEKLOFFR (7) in hydredinamics. In those motions the
energy per unit mass of the fluid is everywhere the same. It is proven in
section 7 that (23) is a necessary and sufficient condition in ordet that it be
possible to choose 2 and g as time independent constants of the motion, in
a steady motion of the Madelung fluid. 7The steady motions satisfying the cond-
ition (23) may be considered as the generalization of the ordinary stationary states
for the generalized Schradinger equation. The ordinary stationary states correspond
io the steady Beltrami motions of the Madelung fluid in which n = 0. There-
fore the condition v = 0 plays a fundamental part in the quantization of the values
of the enerqy.

A simple cage of steady motion in which v/ % = 0 is discussed in section 8.
The trajectories of the elements of fluid within a cirenlar eylinder are helices.
The motion is irrotational outside the cylinder, where the trajectories are

(°y B. Beraramr: Nuovo Cimento, 25, 212 (1889).
(1) W. Segpgrorr: An. Fae. Sei. Uwiv. Toulouse, 10, 271 (1908).
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circles lying on planes perpendicular to the axis of the cylinder. The azimu-
thal component of the vorticity on the cylinder limiting the vortex is infinite.
This Beltrami motion is closely related to the two dimensional vortex motion
discussed in reference (%). The method used to derive the former motion from
the latter consists in impressing to the elements of fluid velocities perpendicular
to the plane of the motion and constant along each trajectory of the two-
dimensional motion, in such a way that W be constant through the mass of
the fluid. Thus the circular trajectories are replaced be helices within the
cylinder. In the outer region no extra-velocity was impressed, because W
was already constant in that region. This method can be applied to derive
Beltrami motions from a large class of two-dimensional vortex motions in
which the trajectories are circles centred at the origin and described in uni-
form motion.

Motions in which the velocity is discontinuous across a surface X are dis-
cussed in section 9. The discontinuity of the tangential component of the
velocity is associated with the existence of a vortex sheet on 2. A method
is given to obtain simple discontinuous motions from stationary two-dimens-
ional solutions of the ordinary Schrédinger equation. It is shown that with
an I satisfying the condition

QD

R oR

24
4) n ox

A= 0,

D

n denoting the unit vector on the normal to a surface X, the stresses on X are

normal, as in the case of the inviscid ordinary fluids. There is an essential
difference between the discontinuous motions of the Madelung fluid and those
of the inviscid ordinary fluids, arising from the fact that the effect of the
pressure in the latter case is replaced by that of the quantum potential which
depends on second order derivatives of the density.

The physical interpretation of the general motions of the Madelung fluid
is not yet entirely clear. It is however remarkable that any motion of the fluid
corresponds to a quantal state of motion of a particle, because the first equation (17)
may be vegarded as an ordinary Schrédinger equation for a particle moving in an
electromagnetic field deseribed by the potentials Ay -+ A, , A -+ A

in

A cu cA cu
or 4 |
(25) Ay = == A, =—— it

e, 6. (8 L

The «inner » electromagnetic field described by the 4, , A4 is

(26) Hin i, )n ] Em = ’l‘)‘/‘\Hiu 0

(& €
The Loventz force due to the «inner v field vanishes: E_+ v/e NH = 0.

(%) M. ScudoNpERG: Nuwovo Cimento, 12, 300 (1954).
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It will be shown in section 6 that the system (17) may be replaced by the

following

i A (” N all Ai,,)); W 4 o(dy + Aol
ot 2m\1 cx c
- d vHin Hiu E Lrd | v A =
(27) 71_1( Q)—A(Q a‘)v_u. E, +~AH=0,
H, —'rotA; Bl —=— ,—(—A(,;,,‘ i ’ A,
dx ¢ ct

The second equation (27) gives the variation of n with time.

2. — Extension of the Helmholtz and Cauchy Vortex Theorems to the Madelung
Fluid.

By solving equations (6) and (7) of section 1 we get w(t, x) and p(t, x).
The trajectories of the elements of the fluid are determined by the differential
equation

1) dz (t

) (ﬁ — v(l; x) -
Along the trajectories we have

(2) & == flby &)

Let us consider two neighbouring trajectories and denote by ox the displace-
ment vector hetween the positions on the two trajectories. ox satisfies the
linear equation

d r % d d

— DR = (f)x';——r»)v(i. D))= (,v 0x . —0 =0 —,
it x cx (

/

ov/cx being a dyadic. Hence

l (‘/
(4) ox = L(t, x,) 0, , 2 D= b Lt 0%
i dt ot
L(t, x,) being a dyadic
cx ‘]/ A'U
(”) ]1(', x.,) i“ ) {',(‘ = (. - L.
ox, ot (x
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Since
. d dv dov L2
(6) a—{(v éx)_ﬁf 0x v fﬁvde-()xwéz ;

we get from the Euler equation

7 d. . (s i, e ) mv: 2 AR
(7) md—l(v (Sx)_((‘E—;—(‘,\H)'(>x~j~ (5( gt I o If)'

It is easily seen that

v v (v 1gid;
2 AE . phe— L) e Py g LT L .
(3) (E+2AH) 00— 8(2-4 1) - (d-0) .
Hence
d ‘m* ¢ hr AR
( ool . - . Pt i A7 . Ly Vi
{9) T (- 0x) (3( 9 ed, (.v A Shet )

By integrating both sides of (9) with respect to t we get

(10) W ox — Wy 0x, = 0y ,

t
(ot B
(]]) Z:t'{)N; T 1'(4‘“’ /I'J'A)4 L)Ij; I[]{"}'df.

0

C

Bquation (10) leads immediately to the circulation theorem for w

(12) ' ’.u Ox == ’.u(,-ﬁx,, 3

¢ r'L,
The circulation theorem means that ’zz-rﬁx is an integral invariant of order t
3
of the motion of the elements of the fluid. Equation (12) can be transformed
by means of the Stokes theorem as follows

(13) N ndS = [y, n,ds,,

] N
s So

S and S, being formed by the same elements of fluid at the times ¢ and 0,
respectively, and limited by the contours ¢ and ¢,. n and n, denote unit
vectors on the normals to S and S,, rvespectively. The choice of S being ar-
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bitrary in (13), we must have
(14) N 01% A 0:% = M- 0120 A 0p X,
for arbitrary d,x, d.x. Equation (14) is the differential form of (13).

It is well known that the adjoint K' of a dyadic K is defined by the
equation

(15) a-Kb-—=b-K'a,

a and b being arbitrary vectors. The determinant | K| of the matrix of K
satisfies the equation ]

(16) Kla\b-c= Ka)\Kb-Kc= c-{K'Ka)Kb)},

for any vectors a, b, ¢. Therefore we have

(17) 'K a) b= K(Ka)KDb).

By taking into account that

(18) . (K1) = (K-

we get

(19) L |0+ 0120 A\ 029 = Mg LY(L 0320 /. L 0y29) == (L)) - 61 A\ Bo%

It follows from (14) and (19) that there is an equation for v similar to
that of Cauchy for the vorticity in hydrodynamics

‘
9 s a4 h
(20) Lin = Ln, = (n, Px)x
Since
9\ | 91 Oy ¢ k
(21) L 0,2 A\ 0sy* 0%y == 0,% A 0, ° 3% == 7 0,2, \ 0y Dy,
: )

because of the conservation of the mass of a fluid element during the motion.
Hence

(22) 0 1= 0p -
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1t follows from (20) and (22) that the vector n/o changes during the motion in the

same way as « Ox

:L"]u 2

Do

(23)

1S

Let d0x, be an element of a »-line at the time 0
0 /

(24) Ox, = o ) 1 (2 = number).

00

Tt follows from (4) and (23) that the corresponding dx will also be an element
of a n-line at the time ¢: dx = an/p. Hence

The elements of the Madelung flwid lying on a n-line at the time 0 will also
lic on a n-line at any other instant of time.

The n-surfaces being formed by n-lines, the elements of the fluid lying on «a
n-surface at the time 0 will also lie on a n-swrface at any other instant of time.
This holds in particular for the n-tubes. Hquation (13) expresses the invariance of
the strength of a n-tube during the motion. k

The above reasoning shows that equations (23) and (13) are equivalent.

Let y be a vector such that ’Y-n dS be an integral invariant

s

(25) /Y-n ds = ’ Yo 1, S,

S Ng
we have

'Y;: LYI) g

0 0,

(26)

Therefore the Helmholtz theorems hold for any such vector y, except the
theorem on the invariance of the strength of a tube, because the strength of
a y-tube has only a meaning when the flux of y is the same through all the
sections of the tube and this does not happen for any tube, unless div y-=0.

It follows from (12) that

(R e df
27 —|v-dx = — | A dx =
27) dt, pio% me (lil’ il

(% o

& ~d~ H-ndSN.

me di

The rate of variation of the cireulation of the velocity is proportional to the rate

of variation of the magnetic flux through the contour C.
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It follows from (23) and the second equation (5) that

o d ov M. (m O

(28) sl =% 2=(5)e

This equation corresponds to that of Helmholtz in hydrodynamics. It is of
the same form as the first equation (3). The Helmholtz equation shows that
in any infinitesimal time interval M/o varies as a ox, it is the differential form
of the Caumchy equation. The equation (23) follows immediately' from (28)
by taking into account the second equation (5). We shall now prove that
the Helmholtz equation expresses the law of variation of the angular mo-
mentum of the elements of the fluid.

Let us consider an element of fluid £ whose barycentric ellipsoid of inertia
at the time 7 is a sphere. Denoting by & the center of gravity of the fluid
element and by r the barycentric position vector of a generiec point, the
moment of the forces F acting on the element with respect to & is

~

(29) aqn = ’.r A {F,; — ((;1;‘) r} odr = /r/ (CPI;) rodr =
o i a i

N G e e T S RN b N
T Z L /\ ( - l!/"/. ro dr = ‘ Z L. /) (—‘) Ue=ale (1'011' F)a -
o \ 0% /; | 3m < ox/q 3m
o
(/ = moment of inertia with respect to @)

the i, being the unit vectors of the coordinate axes and the r, the components
of r. The angular momentum of Q with respect to @ is

30) M=m /.r { 5 (%’-; ) r}gdr i) 7,,./}/,‘ (:%)(, rodr
g g

Since

(31) ¥ o—n=(2)r,

we have

(32) dd]:/[ : m.“r ((lll i-;’) rodr m“r,' (é*‘):lgdr:

(33) € =robuw.



[555] VORTEX MOTIONS OF THE MADELUNG FLUID =3

By taking into account the equation of continuity, we get

)

; aM  Igf d 5)“ w G|
(34) di 9553 ldf(g cx EJG'

Therefore the variation of the angular momentum of Q is given by the equation

g d (€ QUGS IR
(35) m(z))' 5% .00 rot F .

It is easily seen that

1
(36) —-rot F =

0

rot (E - g/H) = -

: ,H_fi(i!)
0 cdig,'

ol
ml >
2|

Rl

The Helmholtz equation (28) follows immediately from (35) and (36).

The way in which we derived equation (20) shows that it is equivalent
to the cirenlation theorem (12). The Cauchy equation and the circulation theorem
for w are therejore equiralent.

It follows from the identity (6) that for any eclosed curve C

ke G/ Y dv
(37) Ef,mv ox b}mm ox .

c o

The identity (8) shows that

y d [e 3 : v ’.

5
From (37) and (38) we get the following identity

(39) . il u'éx:/[mil-} 0(E+PAH> ox .
dt, ! 1 dt . ¢
.

(/]
The left hand side vanishes as a consequence of (12). Therefore the circulation

theorem is equivalent to the equation

(40) 1‘0t{'md—v-——f(E _-‘L_f", \H\)}: 0.
di ¢ ;

3. — Introduection of the Clebseh Parameters.

It is well known from the theory of the Pfaff expressions that the
differential form o = Y X,(z) o, can be reduced to one of the canonical
1=1
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forms

(1) o = Y Y02,
r=1

(2) - 0 = 2 Y702, 02,115
r=1

2s or 2s -1 being the minimum number of independent variables in terms
of which @ can be expressed, the  and z being independent functions of the .
This minimum number is called the class of ». It is at most equal to the

number #.
3

In the particular case of a differential form Z X,0r, in a three dimens-
1=

ional space, there are only three canonical forms: oz, yoz, yoz -+ 0z,. We
are interested in the differential form m-dx, the time ¢ being considered as
a parameter. When u-dx is of class 1, u is the gradient of a funetion S,
i.e. the motion of the Madelung fluid is quasi-irrotational. w-ox is of class 2
when it admits an integrating factor, without being an exact differential. It
is well known that the condition for the existence of an integrating factor is

(3) wy = wurotu =0,

w-ox is of class 3 when w-n 0.

When w-ox is reduced to the canonical form, we have

4 oS ou
(4) w ox = 08 -+ Aoy, u=— -7,
ox cx
In the case of class 1 we can take 4 = u = 0, more generally, 2 as a function

of ¢ and x. In the case of class 2, we can take S = 0, A and p being inde-
pendent. More generally, we can take 2 and p independent and S as a function
of ¢t and g. In the case of class 3, S, 2 and p are independent functions of
xy, @y and x,. Thus we have proven the existence of the Clebsch parameters
S, 4, . by means of the theory of the reduction to the canonical forms.

The existence of the Clebsch parameters can be easily established by the
consideration of the z-lines. Let us assume that the s-lines at the time ¢ are
defined by the equations

(5) A1 (t, x) = const. , u(t, ) — const.

The y-line passing through a point is orthogonal to the vectors 74, 0x and
fulcx, sinee it lies on the two surfaces 2, == constant and ¢ = constant passing
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through the point. Hence

a/‘ll é/.(
6 == — —
(6) 71 Yax Nox’
y being a function of ¢ and x. Since
G G G R
) ol

v, A and u are not independent functions of x
(8) y =P, 4, u).

Let us introduce the function A(¢, x)
) h=|ydi.

It is easily seen that

h, ~ . A
(—}L A2 5 rot u == rot(l %u_) A

10 ==
(10) N ox' ' ox X,
It follows from (10) that there are functions S such that

(11) ll"}tgﬁ:—@?.
ox ox

We shall now prove that it is possible to choose the Clebsch parameters i
and g as constants of the motion. It follows from the equation (10) of
section 2 that
(12) OS(t, x) + Aty x) du(t, x) = 08(0, ) + A(0, x,) 0pe(0, x) + 0y .

Since (12) is equivalent to the equations of moton for 8, 2 and u, we can take

(13) Aty %)= MO, m),  pll, @) = (0, %), St %) = S0, %) + g,

in order to get the solution of the Euler equations that corresponds to the
initial distribution of velocities given by the Clebsch parameters S(0, a,).
A0, x), 1(0, x,). Any motion can be obtained in this way. because any initial

37 - Il Nuovo Cimento.
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distribution of the velocities can be obtained by a suitable choice of the initial
values of S, 2 and p. ‘

- It follows from the third equation (13) and the equation (11) of section 2
that

cS ‘o8 oS _e Cu\? h? AR
Gl e | o — o A A o edo— i S 0
zZm C 0x,

Since

oA~ o/

ot

(15)

l)l‘:v

as a consequence of the two first equations (13), we have

S e o Jit AR
(16) R e —u(l ) ”’) Y e <V

ct ot 2m\ox c °x om R

Equations (15) and (16) associated to the continuity equation

(17) E":Rz__(]iv{;];—z(g_‘Sv ...fA__‘_ )(__)}:0

2
ox ¢ ox,

deseribe completely the motions of the Madelung fluid.
In order to get the most general choice of the Clebsch parameters let us
take the substantial derivatives of both sides of (12)
QISR " o [ mo? fie W AR
(]8) (Ti(rs‘\ —- /, 13[[1):,—,» y 9 - ("‘10 7 (ks 1‘)‘"' R)

o corresponds to the passage from a fluid element to a neighbouring one, there-
fore o and d/d¢f do commute. Equation (18) can be written as follows

N cu o omad ht AR dp dJ
19 IS o K w0 e T R i
#9) \or T A% p) e T e
since
dsS oS E/L du
20 — — W= + A ——)
(20) dt ikl el ot A (70

The form of the right-hand side of (19) shows that the left-hand side is the
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9 differential of a function of't, 2 and g, so that

: o8 ou . mu? hr AR
21 o —:- ;T -+ +ed,—— — J0(t. 25 m)s.
(2 ot R = SO R, (& 4, 1)

Furthermore we have the analogue of the Stuart equations (°)

(22) R
dt oA’ dt

0K
Agie
o

Equation (19) is satisfied with any choice of the function K. The conditions (15)
correspond to the choice K = 0.

The above results can be obtained in a more interesting form by using the
basic equation (12). Let us introduce the notations
(23) Ao(%0) = A(0, x0),  pty(2,) = 10, 25),  Sy(x,) = S(0, x,) .
it follows from (12) that
(24) ° 0(8 ~— 8o — y— Aotto) = — A 81 — 1y 02 ;
N—8q— 7 gty 18 therefore a function of t, 1 and 4,
(25) S == 18—y —Aspies = A (G315 Ao)

and we have

(26) Adu + y 04y = — 04 .
Hence
7 ! o1 o/l
(2‘) I e ‘”() . b
on 04y

BEquation (26) shows that 4, x are related to 2, Mo by a contact trans-

formation whose generating function is — /. .1 can be taken arbitrarily, as
long as it defines a contact transformation. By taking 4 = - ul, we get

the equations (13). Kquations (27) give the finite contact transformation
corresponding to the solution of the Stuart equations (22). By taking the
substantial time derivatives of both sides of equation (25) we get an equation

(") T. Svuart: Dublin Dissertation (1900).
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equivalent fo (21)

(28)

We get from (28) and (21) the following Hamilton-Jacobi equation

(29)

Let ’ w-ox be any relative integral-invariant of order 1.

¢

(30)

O(t, x,) being some function. By

field w

(31)

we get

(32)

(33)

Hence

(34)

and we must have

(35)

with

(36)

The funetion G can

M. SCHONBERG

L A
K(t, —%, .u,) ——_E;t—l =40
e 0

e

w-0x — wy 0x, = 006 .

(a))
lﬂ
b}
Q

S
Il
2|
|
2

0T + vdo = 0T, + v,00, + 00,

d 5
T s M) L = {2
dt(é] 06 + voo)
('dT {_1_0 do\ (lrj" (11'6
TTRRE T e ek

do oG dy oli
dt " o’ e " bo’
d do
8§ (- O ey =
y dt( i dt

be taken arbitravily, since with

o ‘mvt. h* AR 04
o2 Y N T

any

[560]

We have

introducing Clebsch parameters for the vector

(G = G(t, v, 5)) ,

choice

of G the
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equation (34) is satisfied. Different choices of @ correspond to different choices
of the Clebsch parameters 7', », 6. The choice & — 0 leads to » and ¢ that
are constants of the motion.

The above reasoning shows that the circulation theorem for = leads to
equations of the Stuart type for » and . We shall now prove that the circul-
ation theorem follows from the equations (35). Indeed, we have

] s : 0 oG . 0 ) oG
(37) e’ (0,7 0,6 — 04 0,0) =0, & 07 gg()lo — 0 (ég Oyy -+ f— 0,0 | =
‘ dé o oc L oo
= 0:(0,G) — 0,(0,) = 0.
Since

0 0 0 \( 0 ‘
(38) 09 0,6 — 0,v 0,6 = (g-é,x)( z-é.\x) - ((—:-énx)(o—(,-élx) =

cx ox ox T \ox
= (%,«‘\g)-(mxﬁ 0,x) = rot w-d,x /\ dox
equation (37) shows that
(39) rot w-0,x ) dox = rot, w,-0,%,/\ 0,x, .
Hence
(40) /Nrot’ w-ndS = ,‘1'0&" w,-n,dS, ,

S Ne

S denoting an open surface limited by a contour (. HEquation (40) can be
transformed into the circulation theorem for w

,w'()x == ’w(,-(ﬁx(, )
o e
The cireulation theorem for w is equivalent to the proposition that the Clebsch
parameters v, o satisfy equations of the Stuart type.
Let us consider the differential form 0,

. A <l mo? h* AR
(42) Q)= u-dx — 5 edy, - o di .

It follows from (16) that

(:‘3) '(-)d — @S 4 /‘.‘l‘llr o
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The class of 2, is less than. 4, since it can be expressed in terms of the three
functions S, 4, u. Conversely, to assume that the class of £, is less than 4 is
equivalent to assume the existence of three functions S, A, u satisfying (43),
80 that they are Clebsch parameters for u satisfying (16). Hence

The Euler equations imply that 2, is of class less than 4 and also that it is
possible to choose A and p as constants of the motion. Conversely, to assume that
the class of Q. is less than 4 and that it is possible to write Q, = dS + Adu
with 2, w being constants of the motion leads to the Huler equations.

The quasi-irrotational motions are determined by the condition that the class
of Q,is 1, i.e. that Q, is an exact differential. Indeed, £, being an exact dif-
ferential, there are functions S such that for any dx and d¢

‘mu? hr AR ¢
(44) u-dx~—-( D tedy— 2 )dt Lo dd,
Hence
oS ani il (?‘S 14 2 hr AR
5 = —t ———-A) +edy—— — {055
) i ox’ o0 s 2m\dx" e ) ol 2m R ¥

By taking the gradients of both sides of the second equation (45) we get the
Euler equation for quasi-irrotational motions

/ ‘u ¢ [muv? i AR
ct ox\ 2 2m R

4, — Transformations of the Clebseh Parameters.

We shall now discuss the ditferent possible choices of the Clebsch para-
meters for the same state of motion of the fluid. Since

(V) i
] = — A _.i[,
(1) )| A s

Z and u are hoth solutions of the partial differential equation

i

ox

(2) UR = ()

which has only two independent solutions. Therefore the parameters A and g/
of anether set must be functions of ¢, 2 and

(3) A==l 2505 W= (A )
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provided 7 and wx be independent functions of x, as we shall assume.
Since

a_ll A 51('__ D(f1s fo). 04 ﬂ

i

ox '9x  -D(A, u) ox" ox’

(4)

we have the necessary condition
®) D(fr, ) s
D(2, u)

Let us regard u as a « coordinate» ¢ and 2 as its « conjugate momentum ».
Equation (5) shows that the Poisson bracket of ' and 4’ is 1

(6) ou' -eA  ou oA
) R DT =
du A 04 o

It is well known that (6) is a necessary and sufficient condition for the existence
of a function 77(t, yt, 1/) such that

(7) Low— A ou'= ol

or

(8) § iy S a B S
ox ox ox

It follows from (8) that equation (5) is also a sufficient condition for 2" and u’
to be Clebseh parameters, because

(9) @ = T T T
cx cx
Hence
(10) N'= 8 - I' + arbitrary function of ¢t =8 + I" + F(t) .

The function /" may be taken arbitrarily, provided the equations
(11) B Bl 3%,

do define 4, 4" in terms of ¢, 1 and u.
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In order that A" and ' be constants of the motion

- di"” du’
. RN it o8
S di e dt s
we must have
k oh | ¢h di  of, du of,  ofs dA  of, du
: L e v T e o LR [ Sl B | g N )
Febh o W TE L Bl @ % % o & " ou df

When 2 and u are constants of the motion, these equations become

oty ofs
) = () o
(14) P U o 0,
s0 that
(15) A= f(4, 1) #'= (4, p) -

Therefore, in this case, we can get the transformations of the Clebsch para-
meters by means of functions /'(x, x') not involving t.
It follows from (11) that

op ou' ol ou  oI' ou
16 b= === 4+ = —.
Lo ¢ ot 4 ot o ot 8 ou' ot

Denoting by (¢17/0t),,, the total derivative of /" with respect to t, equation (16)
can be written as follows

17) z-ai‘——z’%:(

ol’ ol
at at/ )tot

2 a

When A, p and 4', pi/ are constants of the motion, /" can he taken as a function
of g and y' only, so that

: Op ., 0p 5'11)
1 e — oz | — 2
ik "ty ( o )y

It follows from (8) and (18) that:

A tramsformation of the Clebsch parameters A, p, which are constants of the
motion, into another set 2/, n' with the same property corresponds to a gauge
transformation of the second kind of the quantities — A ou/dx, (A/e) ou/ot.
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By choosing 1" as a function of 1 and u' only and taking F(t) = 0 in equat-
ion (10), the system of equations (15)-(16)-(17) of section 3 becomes invariant for
the transformation of the Clebsch parameters (S, A, u) — (S', A’y 1').

We shall now discuss the behaviour of the equations (15-(16)-(17) of
section 3 for a change of gauge of the electromagnetic potentials

e 1 3
(19) Iy TEla A g R

cx ¢ ot

|
i

The velocity v must be invariant. Hence wu is transformed as follows

(20) u’: n -_ it

e op
¢ ox

and the gauge transformation induces a transformation of the Clebsch para-
meters

: L : | e
(21) 08"+ A ou'= 08 - A du + 3 op .

The general solution of (21) can be obtained in the same way, as that of
equation (12) of section 3 '

ol : ol’ ¢ P
(22) R R T B I T
C"ll S

in terms of an arbitrary function /'(t, u, u') and of another arbitrary function
F(t). By taking F(t) = 0 and a /" depending only on # and p', the equations
(15)-(16)-(17) of section 8 remain invariant. We can take simply

¢ 4
(23) =8 +-¢, A== =27
%

in order to get a gauge transformation of the first kind of the wave function U4

N

(24) ¥ = Rexp ;1

} lie
) v wesnje g
i
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5. — Quasi-Irrotational and #-Regions of the Madelung Fluid.

At any instant of time the fluid is formed by a quasi-irrotational part and
a part in which n 54 0. We shall denote by £, the region of space where
the motion is quasi-irrotational and its boundary surface by X,. The region
where v = 0 will be denoted by Q,.

Y, is in general a surface of discontinuity for the partial derivatives of the
components of the velocity ». This surface of discontinuity has special pro-
perties of propagation, because it is always formed by the same elements of
the fluid. Thus its velocity of propagation at any point coincides with the
component of the velocity of the fluid at the point in the direction of the
normal to X,.

Within ©, the Clebsch parameters 2 and p can be taken null and the first
formula (5) of section 1 is still valid; the equations (16) and (17) of section 3
go over into the equations (2) and (3) of section 1. Hence

By taking A= pu=0 in Q,, the Schridinger equation still holds, the wave
function being ¥ = R exp [ (i/h)S].

There is an important circumstance to be taken into account: the function S
will in general not be single-valued in 2,, when Q, is not a simply-connected
region. This corresponds to the well known fact that the potential of velo-
cities of an ordinary fluid moving irrotationally in a multiply-connected region
is eyelic. Let n -~ 1 be the order of connectivity of £2,. The circulation of
w along any closed path (' within £, is a linear combination of the ecyclic
constants K,, K,, ..., K -

-n

n

(1) ,u-éx = >0, Ky,

=1
F
the coefficients p being integers. The cyclic constants K, as well as n, are
invariants of the motion.
In order that ¥ be single valued in the case of a multiply-connected region
£,, it is necessary and sufficient that the eyclic constants K, be integral
multiples of 2 = h

(2) K, = mh, m, = integer ,

since by starting at a point of ©Q, and describing a closed path in £,, the value

of § will be increased by > p,K,. The equations (2) are restrictions on the
2

initial conditions, Let us consider the case in which the multiple connection
of ©,is due to the existence of n #-rings. The ciclic constants K, are simply
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the values of the strengthes of the rings. Therefore the condition (2) lead
to the quantization of the strengthes of the #-rings: 5
In order that ¥ be single-valued in Q.. it is necessary that the strengthes of
the existing n-rings be integral multiples of . f
It is not necessary to take A and x null in £,. In order that vy be zero it
is sufficient that 91/6x A du/0x be 0,.i.e. that 4 be a function of ¢ and p

(3) b= f(t, u) .

When 2 and u are chosen as constants of the motion, the condition (3) requires
that 4 be a function of x alone

(3a) A= flu),

so that

ol o i L ou o .
(4) A= —|Adu, A=t == )idu.
cx cx, A ct ct X

By taking
() S'= 8 +’). dp = N <= ,ﬂ/l)d// i
and u as any constant of the motion

on cu
(6) S N e (¥ LR

ot c

the equations (15) of section 8 will be satisfied and (16)-(17) take the form of
equations (2) and (3) of section 1. Thus we get again the Schrodinger equation
for ¥W'= R exp [(i/h)S'].

6. — Generalization of the Schrodinger Equation for the General Motions of
the Fluid.

The Euler equations and the continuity equation are valid for any motion
of the Madelung fluid and, by replacing the Schrodinger equation by them,
we obtain a generalization of the Schrodinger theory. This remark was made
independently by TAKABAYASHI (%) and by us (*). TaxaBAvasHI introduced the
Clebsch parameters and the equations (15), (16) and (17) of section 3. We
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have obtained the same equations starting from a generalized form of the
classical Hamilton-Jacobi equation (*). Those equations are not a good ana-
logue of the Schrodinger equation, because they separate the amplitude and
the phase of the wave function. It is precisely interesting to see that the
Schrédinger equation can be generalized by the introduction of an extra scalar
potential and an extra vector potential, without losing the usual form

oV it ol fi 0 P 0/1 . ou 3
(1) ?/?7—*)’7(; C—'x—'—A E ) VL (4’.1104;»5 v,

This equation was given by us in reference (*). It is equivalent to the set
(16)-(17) of section 3, with

(2) ¥ = R exp

i

|

It is obvious that (1) leads to a continuity equation, no matter how A and s
be taken

(3) =+ divj=0, 0 =Xy, Y=o,

s {‘l’*(h ;-?A~/‘;:ﬁ)‘]’——!l’(— L—k—A~“ml)’J/*}

i 0x

., e Gl ou
(5) mv +-A=— + A
C cx ox

It is remarkable that the equations (15) of section 3 can be obtained together
with (1) from the ordinary Schrédinger variational principle

(6) o/w*lm;—w~l LN A W ( a7 /‘)w dtda = 0 ,
] [ ct 2m °x ¢ cx

by giving arbitrary variations to the wave function ¥ and the functions }
and u, as we showed in reference (*). Equation (1) follows from the variation
of ¥* and the equations (15) of section 3 from the variation of A and .

We have seen in section 4 that the most general change of the Clebsch
parameters S, 4, p, such that the new parameters 2’ and u’ he constants of
the motion, corresponds to a gauge transformation of the second kind of
~ AOu/ox and 2 ou/ot

o’ _cu oI’

11 U

y 8 75 Z= NeSE S
cx ox ox

) ' ou ol
" at g
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I" being an arbitrary real function 7'(4, 1) of A and x not involving explicitly
the time ¢, provided 4 and x be independent functions of x. 2/7/¢t denotes

now the (0/70t),, of section 4. To the transformation of the A and x we can
associate the following transformation of S

(8) S'=8+1T,

which leads to a gauge transformation of the first kind of ¥

i

g(e

i

The invariance of the generalized Schrodinger equation for the transform-

ation (7)-(9) follows immediately from the variational principle (6), since for
any real function I” we have

9) Y'= W exp

[ 11/'*{ i e (cAo 40 %)}lp o ‘]’*{ili - (e‘4o+ 28 }&U,

0 ot 0 ot
(1 a ne a3 A\ 2
l- /:*(/f —;———A—}- 2 ?ﬁ‘) g — qj*(h AT TR ﬂ) 7
i ox LIS ox

Therefore it is not necessary to impose on /' the condition of being a function
of 4 and w only. When A and p are independent,. it follows from (7) that I'
must be a function of 2 and ux. Indeed, the equations (7) are equivalent to
the following equation

(11) Adu'= Adpu—drl’.

The class of the Pfaff expression A'dy/ is at most 2, so that the class of
Adg—"dl" cannot be larger than 2. When 4 and u ave independent the class
of Adp-—dl"is 3, unless [ is a function of 4 and .

When 4 and g are not independent, the generalized Schrodinger equation
goes over into the ordinary Schriodinger equation. Indeed, by taking

(12) Al = Adu,

we get

13 T Vi A
5 ' — =10, A —— =0y

(1) cx ct

and Y satisties the ordinary Schrodinger equation.
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Let us consider now the transformation
(14) = (02 WA == S IH

(' being an arbitrary real or complex constant. Since

(15) Ifzv:ijyf (’_? _E__AW;O/‘>1]/ yf(f

L’m[ i ox

e O\ 1

0
ox
the velocity v is not changed by the transformation (14), 2 and ux heing kept
unchanged.  Thus from any solution ¥, A, u of the generalized Schrédinger equation
we can derive other solutions CW*, A, o corresponding to the same distribution of
velocities w(t, x), the density being everywhere multiplied by the constant factor
(048

The gauge-invariance of the generalized Schrédinger equation can be easily
checked. The gauge transformation (19) of section 4 corresponds to the trans-
formation of the wave function

i i

(16) Y'— Y exp i;?—;qp : AM=EA w'= 1,

which can also be combined with a transformation of the parameters S, 1
and u of the type (7).

Nince the generalized Sehridinger equation has the same form as an ordinary
Sehradinger equation for a particle moving in the electromagnetic field described
by the potentials A, = (Ale)cujot, A, = (cAle)ou/ox, we may associate to
any motion of the Madelung fluid a quantal staie of motion of a single particle
deseribed by the wave functions V. This association requires the condition of single-
valuedness of the wave function whieh leads to the quantization of the strengthes
of the n-rings, as shown in section 5.

Let us denote by E and H, the electric and magnetic fields corresponding
to the potentials (1/¢) 2u/0t and — (cA/e) ou/ex

D)
—

~

-~

|

I
=)
=
e
K

|
=
=

(17) Bl il

in

~
Q)i

2>
i
=

=

The second equation (17) shows that the Lorente force due to the «imner» field
vanishes.  The Helmholtz equation (28) of section 2 gives the equation of
motion of the «inner» field

1 H, / 0’
(18) Al L’.‘_(!ﬂf’.ﬁi)vf: (1%
e ox
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It is obvious that the equations of motion of the Madelung fluid can be
~ written as follows

oY A7 G e 2 {
= (E o | A".)) Y+ e(4 + 4o,1)7,
: B goid L (0N
(19) H,, =rot 4, e TG, Pt 71
Lt b
i P12 :v = = 0, Ein T ’l—;/\ H ¢
dt  2x) o Clghite

These equations do not involve any more the Clebsch parameters.
of motion of the Madelung fluid are equivalent to the system formed by the general-
ized Schridinger equation, the Helmholtz equation in the form (18) and the con-

dition on the Lorentz force due to the «inner» field to vanish E +v/e) H, =0.

The equations

7. — Steady Motions of the Madelung Fluid.

In the steady motions, the velocity and the density at any point are time
independent :

- 4B fesai)
(1) byl TS 7 A

We shall assume that the external electromagnetic field is time independent
and that the potentials do not depend on . In this case the Euler equation
becomes

g oW :
(") ax = v/ \n ’

. mw? it AR
(3) W= 5 + ed, om B 1

as is easily seen by taking into account the identity (2/0x)v?*/2 = (v:d/cx)v -+
+ vArot v. Since

aw

Ox

(4)

B, =105

W is a constant of the motion. In the present case the trajectories coincide
with the streamlines and W has the same value at all the points of a stream-
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line. When
(5) v/in =0 (everywhere) .

W has the same value at all the points of the fluid. Condition (3) is satisfied
in the quasi-irrotational motions.

When v \m =0, the value of W is not constant in the wlw[( fluid. This s
an essential difference between the general and the quasi-irvotational steady motions
of the Madelung fluid.

In the steady motions of the Madelung fluid

cW 1
(6) —m =0,

ox

so that W can be taken as a Clebsch parameter, provided v/ n == 0. Let us
take

(7) R Vi

We must determine the parameter p by the conditions

, 04  ou o ... o
(8) =55 = i o2 =01,
ox 0ox ct cx

It follows from (7) and (2) that

©) LN Yy .. P 4 P

x ox cx ox

0 DD

2|
R] I

The vector v is orthogonal to éu/ox, as a consequence of the first equation (8).

Hence
dA 0 cu o
) R P
ox 0x ox ot
and we get
y op
l] —_— — 1 i t '
(11) pr 1 y(x)
When /9= 0 the two equations
(12) l(j 0. ‘q-/,/ 0
fx rx
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admit only common solutions of the form F(¢, W), F denoting an arbitrary
funetion. Therefore, in that case, a time independent Clebsch parameter A
or u which is also a constant of the motion must be a function of W. When
vy =0, the two equations (12) are not distinct and it is possible to choose
A and u as time independent constants of the motion. Let us assume that
v/An =0 and ns=0. The second equation (12) has two independent solutions
fi and f,, that are also time independent constants of the motion. ¥, being
orthogonal to 7f,/¢x and ¢f,/éx, is parallel to ¢f,/éiA of,/ox

Sinco

(14) divy = 0 = ;ﬁ%\% ‘
we have

o AN

Let I, and F, be two independent functions of f,, f,. Since

(16) i]ﬂl A ?;14‘2 Lok DI, 14‘._,).5[,» (:f _n D(F,, Fy) ‘
cx ' ox D(f,. ;) ox 2x o D(fy, f.)
by choosing the /' in order that
DI, F,)
we can take
(18) A==l w=F,.

In order that time independent constants of the motion may be taken as Clebsch
parameters in a steady motion of the Madelung fluid, it is necessary and sufficient

that »/n = 0.
The flux through any section of a stream tube has a value independent
of the choice of the section, in a steady motion. Ilence

(19) ’ ov-ndS /Q',n,-n“ as, .

S S
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In « steady motion ov is a y-vector. By the application of the formula (26)
of section 2, we get

(20) v = (vo- ,6 )x

0x,

The dyadic that transforms v, into v transforms also n,/o, into n/o, in any steady
motion of the Madelung fluid.
It follows from the above tlieorem that v,/n,= 0 leads to v/An =0 at

the points of the streamline passing through x, and to the constancy of n/or

7 Mo
21 — = 3
(21) "oV 0y

njov is a constant of the motion in the steady motions in which the streamlines
coincide with the n-lines, i.e. in the steady motions in which W is constant through
the whole flwid. This theorem corresponds to that of Beltrami for ordinary
inviscid fluids. We shall call Beltrami motions those satisfying the condition
v/ n=0. In the Beltrami motions the «inner» electric field E,_, defined in
section 6 is null.

We are led to the Beltrami motions by considering the motions of the
Madelung fluid with wave functions of the stationary quantum mechanical

type
(22) P(t, x) = D(x) exp »—7; Et] ; E = constant,
)

with time independent 2 and . 1In this case the generalized Schradinger
equation becomes

(23) (" o a2 o ) ) @ + eA,d = ED,
1 0x
(24) L I
cx ox

The existence of the constant W in the steady motions of the Madelung
fluid corresponds to the Bernoulli theorem, which expresses the conservation
of the total energy of any element of the fluid during its motion. The total
energy per mass m is the sum of the kinetic energy mw?/2, the external po-
tential energy eA, and the internal energy — (42/2m)AR/R. In the steady
Beltrami motions, the energy per unit mass is the same for all the elements
of the fluid. This happens in particular in the quasi-irrotational steady motions
degeribed by the ordinary Schrodinger equation.
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It is interesting to notice that the steady motions corresponding to discrete eigen-
values of the hamiltonian are characterized by the conditions of having wave funct-
ions ¥ that are regular everywhere and tend to zero at infinity with sufficient

G
rapidity to render /5‘1’!3(1.@ finite and of having = 0 cverywhere.

— @©

8. — Simple Case of Beltrami Motion.

Beltrami discussed, in hydrodynamics, the motion of an incompressible
fluid with the following distribution of velocities

(1) vV=wA x - Viva—r w (r < a)(r? = a} + a3),

w = constant vector parallel to the ay-axis.
It is easily seen that

B
(2) rot v = e divo = 0 r<a).

a — re

We shall assume the distribution of velocities (1) for »<C ¢ and take

a’x
(3) v=wA ! (r > a).
It is easily seen that
(4) rotbv =190, divo = 0. r > a).

Equations (1) and (3) define a distribution of velocities satisfying everywhere
the condition v/An = 0, in the absence of magnetic fields. We shall assume
that there are no electromagnetic fields. Since dr/d¢t = 0, we have

dv ] 4 p
m——=mw v = — mor, A S
di
(5) dv ma* mmtat 4
M= e IO ==t r, r>a
di (i $e ' 1

r = 2,0 + Bl .

The density mR? is now a constant of the motion, since dive = 0. R can be
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taken as a function of r satisfying the equations

e , — mw*r, r<a,
‘i
6) — = mmiat
(6 2m dr R l—fg~~ r> a.
Hence
mim?
IR ' o GRSk r<a,
yAp 1 &
-
7 o A
(7 R miwiat -72 i

(k* = constant of integration).

It follows from the equations (1) and (2) of section 5 that we must take

(8) mwa® = lh (I = positive integer).
since
a
(9) Bz’ia-rob vrdr = 2ama® .
J

We get from (7)

&R 1 @4R [P PR L J
A w e ol W ((pd D8l IS s BT == ) " <@,
| dy? t pldr lu“ 0 il I l { Ll
(
o @R @R
— = = k2= JRB=0, (B e
dr2 r dr . e
Hence
(11) R = o] (kr) -+ N, (kr) 7> a (« and fi = constants),

J, and N, denoting the Bessel and Neumann functions of order [, respectively.
The first equation (10) has only one solution regular at » = 0, we shall denote
it by @G(r), with the normalization G(0) = 1. The fitting conditions at the
boundary of the vortex tube

' G (a) = ot (ka) + PN, (ka) ,
(12)
l t'(a) = lc{a.-lg(ka) 4 /)’N;(/ra,)} ;
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determine o and f

~

‘ o = = (kG (a)N}(ka) — G'(a)N (ka)},
(13) 3
| E

= )a (kG (a)] (ka) — G'(a)d (ka)} .

The trajectories of the elements of the fluid are helices in the vortex tube
and circles outside the tube. It is easily seen that the value of W is everywhere
the same

nfp2 hr AR i fi2k?

) W o e R
We can take for r<<a
(15a) 8 =— Wt lhy (2 mBL UV, = e Vo),
and for » > a
(15D0) N =-— Wt -+ lhp, A—"Ugs =0

@ denoting the azimuthal angle around the a; axis

The above choice of ‘the Clebseh parameters leads to a multiple valued ¥ for
r< a. A single valued wave function can be obtained by taking for »r << a
they, lh g Wy

17) S=—Wit+ 2 Vat — 2 lip, A= (@*—r?), =

aen ‘//r) i
y e : : Vagp.
V2a? V2a® va*—r

Equation (2) shows that the component of the vorticity tangent to the
cirles 7, = const r = a is infinite. Situations in which the vorticity becomes
infinite on a surface are well known in hydrodynamics.

9. — Diseontinuous Motions and Vortex Sheets.

We shall now examine some cases of discontinuous motion associated to
vortex sheets. Let us discuss firstly a simple case of steady motion, in the
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absence of electromagnetic fields, whose velocity distribution is

(1 i3 ) ivl > 0 )
(1) == : {
Uity &y <= 0 3
(2) I = constant 0, U, = constants

The Euler and continuity equations are obviously satistied for x; 0. Although
v is discontinuous, we can give a meaning to the equations of motion even
when @; = 0, since

(3) lim LN m(u CANE Al AR
: et e S A 1 Al
z,—>0+ l Et \ (,‘x) m ox 1{ i P
lim 3 m oo 4+ m( 9 ht o AR o
5 ATl U —= _— — — LN
Skl Cx)v 2m ox R ’
(4) _H}Lr})g_{ gf + div (Qv)} = lim_ { z;’ + div (Qv)} =L0n

Denoting by o(z) the Dirac singular function, we have
(5) rot v = (v, — v;) 0(@,)i, .

The discontinwity swrface x, = 0 4s a wvortew sheet. The distribution of velo-
cities (1) can be described by means of discontinuous Clebsch parameters

(6) §=m|v|m, I=—z, upu=m|v|.

The above results can be edsily extended to more general cases. Let X
be a surface dividing the space into two regions in which the vector field
w(x) is continuous and has continuous derivatives, there being a jump of the
tangential component of w across X. Let n(x), T,(x), T.(x) be three mutually
orthogonal continuous unit vectors such that n = t, /A7, and n(x) be normal
to 2 when x lies on 2. Since

» ] C 0 AH)
(7) div w = '1:1-~,—~)w-'r, + Tt | T | —wn,
ox ox \ ox

we can define divw on 2 when (v,-0/0x)w T, (7. 8/0x) w-t,+(n-0/0x)w n
tends to a defined value, independent of the path, as x approaches any point of
2. divaw can be finite on 2| notwithstanding the discontinuity of the tangential
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component of w. The situation with rotw is essentially different. Since

1 ) ¢ A
(38) rot w = 1, /\(71 T)w i T:A(T:'T) w + n/\(n-.—)w 5
Y ox ox ox ;
and
¢ 0w 0 CORI
(9) nA(n: 3 )w:n/\ - = = (n\w) +w/\(n'r)n.
2 on on cx

rotw has a delta-like singularity arising from the derivation of the discontinuous
tangential vector nAw. By the application of the above results to the velocity,
we see that:

The discontinuity of the tangential component of the wvelocity across a sur-
face X is associated to the existence of a wvortex sheet on X' corresponding to a
delta-like singularity of the tangential component of rot v. It may nevertheless
be possible to define the divergence of v on X and the value of divwv may be
finite on . b

The surface X may either contain always the same elements of the fluid
or propagate in the mass of the fluid as a wave of discontinuity. In the case
of a fixed X' containing always the same elements of the fluid, their trajectories
lie on 2, so that the normal component of the velocity is continuous and null
on 2. In order that the equations of motion be satisfied on X, it is necessary

that

0 it o AR
’)IT’“L77L(U':— (e e —FE,
ct ox 2m ox R
and
co co ;
22 L 88 oL b div D
ot ox

tend to zero as x approaches X, independently of the path. There is no diffi-
culty with the terms involving the derivatives of v, as we have shown. With
respect to this point the situation is similar to that of the dynamics of ordi-
nary compressible fluids, but the requirements on the behaviour of the dens-
ity are essentially different, because the force derived from the quantum po-
tential involves derivatives of the third order of the density.

We shall now discuss another example of steady motions with vortex sheets,
corresponding to a potential V7 (r) depending only on the distance to the
wy - axis. Let R(r)exp [ilg — (i/f)Bt] be a stationary solution of the ordinary
Schridinger equation for the potential 7(r), corresponding to the eigenvalue #
of the energy. The trajectories of the clements arve cireles r==const. ay=const.
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described in uniform motion, the velocity being (ii/mr®)i;A\r. Let us consider
the motion in which the density distribution is the same as in that stationary
state, the distribution of the velocities being

. 4
— A -1 r<a
mr? ' / ]
(10) Ll
mie i, AT+ Vi, , A,
Y

(v, v, = constants) .

In the present case X is the cylinder » = a. It is easily seen that the REuler

equation and the equation of continuity are satisfied everywhere. The motion
is irrotational for » -4 a but the eylinder » =« is a vortex sheet

(11) rot v = 0(r— a)(r, — vy)i, ,‘\f .
3

It follows from the equation (8) of section 1 that the stress T acting on
a surface element do of the fluid is in general not directed along the normal n

fi2 OR OR h?
— — Aon .
m on 0x dm

(12) T =
A necessary and sufficient condition for T to be normal is

o

on

(13)

This condition is satisfied in the motion defined by (10) on Y.

RIASSUNTO (%)

Si discutono i moti generici del mezzo continuo (fuido di Madelung) i cui moti
irrotazionali sono descritti dall’equazione di Schrodinger. Si dimostra che molti dei
teoremi fondamentali del moto vorticoso dei fluidi barotropici non viscosi sono validi
anche per il fluido di Madelung. Si da una discussione dettagliata dei parametri di
Clebseh. Si dimostra 1'esistenza di uno speciale tipo di moti permanenti, simili ai moti
di Beltrami, in cui le linee di flusso coincidono con le linee di vorticosita, che corri-
sponde a una stretta generalizzazione degli ordinari stati stazionari. Si discute la quan-
tizzazione dei tubi di vorticosita. Si danno esempi di moti di Beltrami e di moti discon-
tinui del fluido di Madelung. Si dimostra che i moti generici del fluido di Madelung
possono essere interpretati anche flsicamente in termini degli ordinari stati quantiei
di una particella.
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