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Summary. — It is shown that the second quantization methods are a
general mathematical technique applicable to formalisms involving linear
equations of change, differential with respect to the time variable. The
ordinary second quantization formalism for systems of bosons or fermions,
and the «second quantization » of the classical theory developed by the
author are obtained as particular cases of the general methods. There
are several ways of applying the secend quantization miethods to the
same linear problem, which lead to different formalisms. A very simple
kind of second quantization is applied to the Schrodinger equation of
an arbitrary mechanical system in order to develop a new treatment of
the statistical quantum mechanies (the Gibbs second quantization). In
this way a straightforward method of intioducing the Gibbs ensembles
and grand ensembles is obtained. The entropy is discussed with the
Giibbs second quantization. Sonie ergodic theorems of the general second
quantization and the quantum nechanics are derived.

1. — Introduection.

The first application of a second quantization method was made by
DirAc () in the quantum theory of systems of non interacting bosons. JORDAN
and KLEIN (%) extended Dirac’s method to the case of interacting bosons and
JorpAN and WIGNER (*) showed that a second quantization formalism
can also be developed for interacting fermions. The technique of second

. M. Dirac: Proc. Roy. Soc., A 114, 243 (1927).
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(2) P. Jorpanx and E. WieN¥R: Zeits. f. Phys., 47, 631 (1928).
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quantization was considerably improved by Fock (¢) and JORDAN (®), in the
sense of simplifying the passage from the formalism in configuration space
to that of second quantization. We have shown recently (¢) that the methods
of second quantization can also be applied to the classical mechanics, by using
the first order linear partial differential equation for the integrals of the motion
(Liouville equation of the classical statistical mechanics) as the wave equation
submitted to the «second quantization » procedure. In this case the deno-
mination of second quantization is clearly inadequate, since the Planck constant
does not appear in the theory. The results of reference (6) indicate that the
second quantization method is a mathematical technique which can be applied
to linear differential equations others than the wave equations of the quantum
theory. In the present paper we shall prove that the second quantization
.methods can be applied to any linear equation of the form

5 .
1=l Tues, Ta) =R GO gy T dn (G Tasaeey Ty

(1) =

()

¥, being a function of » similar sets 7, of » variables x", z{", ..., ", continuous

1.9
or discrete, and K ,(f; r) a linear operator of the form

e 7 . i
(2) Ko(85 Ty ooy Tn) Z 'o?‘ z K5 Ty, 5 Tryy oey Tia) (s < m),

..... 1%
z' denoting that the summation is taken over different values of I, Iy, ..., I,
and the K“(t; To s Tyy veny Tig) being linear operators symmetrical with respect
to the Tiy Tiyyeery Tige We shall treat all the z as continuous variables for the
sake of simpiicity, but it will be obvious that the modifications necessary when
some of the x are discrete are of a trivial nature. We shall assume that the
P, ..., o{P are the coordinates of a point 7, in a » dimensional space 2 and we
shall denote by dr the element of -velume -in Q.
The basic operators of the «second quantization » are the hermitian con-
jugated w(r) and w*(r) characterized by the following commutation rules:

(3) [(z), "/)*(T’)]_-h = dr—1'), [(z), 1/’(7,)];{: = [yp*(7), 7/)*(7,)]:1: =0,

(4) dr—1') = 8(z;, — 2}) 8(2y— ;) ... O (@ —2,) ,
(5) - [4,B], = AB + BA.
(*) V. Fock: Zeits. f. Phys., 75, 522 (1932).

)
(®) P. JorDAN: Zeits. f. Phys., T5, 648 (1932).
) M. SCHONBERG: Nuovo Cimento. 9, 1139 (1952); 10, 419 (1953).
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The signs -+ and — correspond to two different forms of the «second
quantization ». In the ordinary second quantization they correspond to the

cases of bosons (—) and fermions ( ). We shall introduce the operators X,
and X

1
(6) K= a—!f1/)*(1',)w*(rg)...w*(‘rﬁ)K‘“’(TI,..., Ta{ P (Ta) P (Tam1) oo @(T1) Y7100 ATy
It

(M) RS

a=]

and the functionals y defined by the equation:
(8) ik — Ry
The general solution of (8) is given by a series of the form (Fock exp ansion)

(9) 1) = Poxo + > —= it Tayeens Te)Aa(Tas ooy Ty oo ATy

#=1V k!
Q2
%o being a functional to be defined later and

(10) L(Tay ooy Te) = PF(T)P*(T) ... *(Te) 20 -

The ¥, are solutions of equation (1).
The operator N,

(11) Nop = [ y*@p(z) dr
= L)

has the eigenvalues 0, 1, 2, 3... (c0). N, is the operator for the number of
particles in the usual form of second quantization, as well as in the theory
of reference (6). x, is the eigenfunctional of N, corresponding to the eigen-

value 0, with a suitable normalization

(12)- . Nopxoz 07

(13) Jagwap=1,

u-space
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the integration in (13) being performed with respect to the variables involved
in y,. 7z, is the wave functional of the vacuum in the usual forms of second
quantization. The x(7y, ..., 7x) are also eigenfunctionals of N,

(14) Nopxk(‘rl’ Ty veey T};) — klk(rl, ceny Tk) y

hence each term of the series in the right hand side of (9) is an eigenfunctional
of N,

(15) Nopf’l’k(t; Tay eeey T) Xu(Trge ooy Ti) AT1 oo A=
Q
= kf?P,;(t; T1 geeey Te)Xu(Try ooey To) AT1 .. AT
Q
When y satisfies the condition
(16) » Nopx =k, (k == positive integer)

there is only one term in the right hand side of (9)

1
) 2(t) = —ﬁf‘ﬂk(t; Toy ooy Th)XlTay oony Tae) ATy oo ATsy
Q
and
(18) Wyt 71, o T o = — PEP(Tr) e () 2D
k,u---,kXo——\/mw B)P(Tr—1) -« YP\T1) ) .

Thus we get a solution of (1) from any solution of (8) satisfying the con-
dition (16). This solution of (1) is symmetrical or anti-symmetrical, according
to the sign in the commutation rules (3). Conversely, with any symmetrical
solution of (1) we can form a solution (17) of (8), with the sign minus in the
commutation rules, and with any anti-symmetrical solution of (1) we can form
a solution (17) of (8), with the sign plus in the commutation rules, the con-
dition (16) being satisfied in both cases.

The proofs of the above results are given in sections 2 and 3. These results
contain as particular cases the fundamental theorems of the usual second
quantization as well as those of reference (6). There are however other in-
teresting applications. Let H be the hamiltonian of a quantal sistem 2’ of any
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kind, by taking

(19) KoY — f—1H ; K® — K6 —. | — 0’ (}i — ,h_>
27

we get a new kind of a second quantization formalism describing statistical
ensembles. Let us assume that at the time 0 it is only known that the system X'
is in one of the states described by the time independent and orthogonal wave
functions @1, @s, ..., ;. We can extend the set (¢, y P2y +eey @p) DY including
other orthogonal functlons, in order to obtain a complete set of orthogonal
functions ¢, (4 = 1, 2, ... (0)), and take the occupation numbers N,1 of those
states as variables to describe the « quantized field ». The wave functional %(0)
is then

(20) 2(0) = 61\71.161\'2’,1 S v 1 H 61\7 S0

Pa=pt1 A

By determining the wave functional x(¢) we can compute the probabilities
of the various distributions of the p similar systems between the various
states g, at the time ¢. It will be shown in section 6 that the wave functional
%(t) whose initial value is '

@

My V Mo ]._I ’"l )

(21) 2(0) = 0y, 0
describes the same incompletely specifled state of motion of a system X as
the von Neuman density matrix {z|R(t)|7’) whose initial value is:

(22) {t|R(0) Mz = znx%('f%( ‘).

=1

This new kind of second quantization gives the most direct quantal method
of introducing the ensembles and grand ensembles of the statistical technique
of Gibbs. We shall call it the Gibbs second quantization. The grand ensembles
are described by wave functionals y which are not eigenfunctionals of N,

The formalism of the Gibbs second quantization becomes particularly in-
teresting in the representation in which the «emission » operators u*(t) are
diagonalized, the yp*-representation. Such a representation was already used
by Fock (7) in the quantum electrodynamics, it is closely related to the Fock (&)

(") V. Fock: Phys. Zeits. Sow. Un., 6, 428 (1934).
(8) V. Fock: Zeits. f. Phys., 49, 339 (1928).
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theory of the harmonic oscillator. The use of the p*-representation requires
an extension of the ordinary technique of the transformation theory of the
quantum mechanics, because the basic commutable operators of the repre-
sentation are not hermitian. DIRAC (°) has given an extension of the trans-
formation theory which allows to-deal with such generalized representations.
The Dirac technique involves contour integration and does not seem to be
the most convenient. In section 4 is given a new treatment of the y*-repre-
sentation, in which contour integration is avoided by the use of methods of
the theory of systems of orthogonal functions of complex variables. In the
p*-representation the wave functional y is a functional of a complex function
p*(r) and the operators &  have the form: ;

1 6“
23 ﬂ‘x: — * S * aI () Ty e 2
(23) M!wa (G X (E) T2 (T ) F I TEN S T dr, ... dr

The equation (8) for the Gibbs second quantization becomes a first order
partial differential equation:

.d ) t; *
ey, o =Syl | G L

Q

The complex conjugated of y[t; p*] is a functional of a function y = (p*)*
and satisfies the equation:

.d o ¥t
(24p)  —igrtse = [l rmymar.
o

The product x[t; p*]x*[¢; »'] is a functional of the two complex functions p*
and y’ which satisfies a kind of Liouville equation:

< il sy o P P ;
(210) ’Ldt @[t, 'lp*, w] _Qf{ w*(T)K(T)W—' '(/)T‘L’)K(T)w (T)}d‘[ 5

The equations (24) play a central role in a generalization of the quantum me-
chanics recently discussed by us (*°). Both (24a) and (24b) are particular
cases of (24¢), so that y[t; 9*] and |y[t; p*]|2 satisfy the same Liouville
equation.

(®) P. A. M. Dirac: Comm. Dub. Inst. f. Adv. Stud., A, 1 (1943).
(1°) M. SCHONBERG: Nuovo Cimento, 10, 350 (1953).
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The relations between the Gibbs second quantization and the von Neumann
statistical formalism are discussed in sections 6. and 7. It is shown that a
non normalized von Neumann operator R(f) can be defined in terms of any
normalized solution x(¢) of the equation (8) of the Gibbs second quantization:

(25) RO = [ 2*Op )0 du

u-space

Thus it becomes possible to apply the von Neumann definition of the entropy
to the Gibbs second quantization by means of (25). The entropy thus deflned.
is time independent. An interesting feature of the Gibbs second quantization
consists in the possibility of defining a kind of entropy operator Sg:

(26) 8P =—k>f,logf,. (k = Boltzmann constant).
. 4 .

The f, are the N,/N, ., conveniently defined in order to avoid the difficulties

arising from the eigenvalue 0 of N . The expectation value / x*(t)Sg’;: 2(t) du

pn-space
has a behaviour similar to that of an entropy. Thus in the case of a wave

functional of the type (21) the expectation value of S,, coincides with the
von Neumann entropy of the assembly described by the density operator (22).
The entropy is discussed in section 8. :

In section 9 the ordinary second quantization of the quantum mechanics is
obtained as a particular case of the general theory. Some new formulas are
given. The «second quantization» formalism of the classical mechanics is
obtained from the general theory in section 10. It is shown that there is a
classical analogue of the Gibbs second quantization. '

It is shown in section 11 that in the case of hermitian operators K the
general formalism of «second quantization » may be obtained by the appli-
cation of the ordinary procedure of field quantization to a kind of field in
the space 2 described by non linear equations. This approach is particularly
interesting in the case of the Gibbs second quantization, because it allows to
get the interpretation rules of the statistical formalism from the usual inter-
pretation rules of the theory of the quantized fields. The quantum theory
of a field whose quanta are bosons appears as a statistical theory of systems
of bosons. From this facts results the possibility of dssigning an entropy to
a pure state of a field of bosons (*).

Ergodic theorems of the general «second quantization » and of the quantum
mechanics are derived in sections 13 and 14. These ergodic theorems give the
values of generalized limits for ¢ = co of operators & (t), A(t) of the Heisen-

(*) Prof. PRIGOGINE was led to a similar conclusion by different considerations.
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berg representations of the general second quantization and of the quantum
mechanics. The generalized Cesaro limits

(27a) . FA(e0) =lim %fﬂ(t)dt

are discussed in section 13, for hamiltonians & with a pure point spectrum.
The case of general spectra is discussed in section 14 by means of the Abel
generalized limit:
(27b) e e afe—wsq(t)dt :

o—>0+ -
The ergodic theorems allow to give a justification of the fundamental postulate
of the equal a priori probabilities, without the unsatisfactory use of the per-
turbation theory for long intervals of time. These ergodic theorems differ
considerably from those of the usual ergodic theory, developed in the last
twenty years in connection with the classical mechanics and the theory of
stochastic processes, although the generalized limits are used in both.

2. — The general formalism of second quantization.

It follows from the commutation rules (3) that

k

(28) [e(7), »*(T)p* (%) ... _E (T —7)p*(T) ... p*(w)
with g

(29) o(7) = »*(7)p(z)

and

(30) [4,B]= AB— BA.

By taking the hermitian conjugates of.both sides of (28) we get:

(31) (Y@ P(Tima) oo p(12); 0(2)] = 3 (v — 7)p(T4) .o 9(T1) -
Since
(32) Nop = /»'Ip*(‘t)w(‘r) dr,

Q2
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we get from (28) and (31):
(33a) [Nop’ PH(T) e pF(T)] = ky¥(zy) ... P*(Tx)

(33b) [N op P(T) e P(r0)] = — kp(Ts) ... 9(7,) -

We get from (6) and (7), by taking into account (33):

(34) ['Nop?j(‘a]=07 [Nop7R]=O’
Let y be a solution of (8). We have
o .d !
(35) i(‘lz(NopX) = @*\opd-zc = Nopj‘)X — ]{(NODX)v

so that N, y is also a solution of (8). We shall now prove that the con-
dition (16) will be satisfied for all ¢ if it is for a particular value to, provided
the equation (8) determines y(¢) for all ¢ when y(t,) is given, as will be always
assumed. N, »(f) must coincide with ky(¢), because both are solutions of (8)
and have the same value for ¢ = ,.

The proof that the eigenvalues of N, are 0,1, 2, ... (co) is the same as
in the Dirac-Jordan second quantization (see for instance reference (6),
section 4). The same considerations given in sections 4 and 5 of reference (6)
are applicable in the present case and thus we can establish that the Ae(Tiy ooey Th)
constitute a complete orthonormal set. From this follows the possibility of
expanding any functional y(¢) in a series of the type (9).

In order to show that the coefficients ¥ (zy, ..., 7;) in the expansion (9) of
the solutions of (8) do satisfy equations of the form (1), we shall need the
following equation

L<U<..<ly

(36) [Ray 9*(@) . p*E)] = 3 (B9* (v, oony T )9(T) oo p(m))* +

Uisbaseres by =1,3,000sk
3L<la<...<ly_y

+ > f(K(“’*(Tm ey Ty TR0 W(TE) v p(30)}) *p(71) doy +

1 U<b<..<ly_g

: ](K(“)*(Tz,;---3fza_2’ 71, To){P(T2) (7)) p(Ts).. (1)} )+

Lislaye. '»L“ _2=1,2,..0

cp(Te)p(ry) drydry + ... +

i s & f(K‘“’* (Tiys Tiy ooy Taer) {P(Taa) oo W (@0 (R) oo 9 (7)) *5

FA (a—1)! 1,=1
Q

P(Torq) oo (e1) ATy oo- AT5 g

K®* denoting the adjoint or hermitian conjugated of the operator K. When
o >k the first « —k terms in the right hand side of (36) do not exist. This



10 M. SCHONBERG [706]
equation is satisfied for & = 1, as a consequence of (6) and (3):
[_7(“, Y (1'1) =

== Cx——l——l—)'f(I((w*(Tn T;; ) T;_l){w(ffx—1)---#’(71')w(fl)})*w(fz;—l)---w(fi) dog..dyy.
1)

Since :
(38)  [Fay p¥(m) o p*(1)] = [Ra, p*(1) oo p* () Jp*(7e) +

s 1/)*(-[’) W*(T’*‘-l)[]“,ﬁ’ "/)*(T’f)] = [Kea, P*(Ty) e p*(Ti—) Jy* ()

—+ (-(Z——J—IFJ (,K(“)*(‘(,‘., T;a ooy Ta:~1){'¢/)(7a,—1) 'lp(T{)tp(T;‘.) "P(Tl)})*'
2
“P(Tacq) oo P(T1) 473 . Arp g
and
1 1< <ly_p
(39) T 21 = f(K“")*(r,l, b A, s 71, P
el p= ekl

ALP(Ty) e WE)P(Timy) oo (1)) ¥(T5) oo W(T7) ATy o AT ¥ (T0) =

1 0<e <l

= ]7' z [(IO“’*(T“, ey Toy_ 9Ty ey Tp)*
Lsensly _p=1y00 sk—=1

Q

=,

L) oo pEDW(TL) - (1)} *(T)) - () doy . dT, +

‘ 1 L<HZl, .

3 7o)k ’ ’ .

T (77—1)' z f (.Il(o‘) (TZN"" Tl(x—p"[k’ Tiy eeny Tﬂ—l)
= “lensly _p=1ye k=1

Q

{P(T-1) e p(E)P(T) - (@)} P(To) e p() dy s AT

the wvalidity of (36) for & follows from its validity for k¥ — 1. Therefore we
have proven (36) for all the values of k¥ and . We get from (36) and (10) the
following relation:

(40) ﬂlk(”:n ey Te) = PH¥(11) o0 ?/)*(Tk)ijO S

sork 1<o.<ly

ol Z Z ) (]f(“’*(-[,l, ey TIK)X:(TU ) Tk))* -

s ork+1 Ly<in<l,_

L) ) k'/(K‘“’*(r“,---,m_l,rl){w(ri)w(rk)--.w(rl)})*zp(ri)-

a=1  lyuly _1=1..,k

“xodT .+ Z ~—~f K@* (1, 71y ey Tu_){0((To_1)- o (@) p(Te). o 9p(T2) ] )* -

oc—l
Q

-1/)(1:;_1) wee (T1) %o (s AT S
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By taking into account (33b) we get

(41) Nopw(r)Xo = —p(T) %o

and, since N, has no negative eigenvalues, we have
(42) P(T) o =0

and, (40) can be simplified:

sork £,<...<L“

(43) R (7717."-7 ) = z z (K(M*(Tl,y ceey Tla)x;;k(rly ooy Tk)) o'

2=1 lyyunly =1,k

By introducing the expansion (9) into (8) and taking into account (43) we get
the equations for the:

(44a) ia—?i’ =0,
ot
aw. k 1,<..<l,
(44b) =Y 3 E91,, .7, )Py e 1) (k< s)
ot o=l U, =1k
. 0¥, ;
(44c) i _éik — KTy oy T)Tn(Tay oy Ta) (k= s)

Until now we have not assumed that the K are hermitian. We made only
use of the adjoints K“* and of the relation

(45) (E=*)* = K@

The case of hermitian K is particularly important because of the conservation
law

d
(46) Etfm(t; N e e
o2

which allows to define a probability distribution of density |¥i(zi, -y 7a) |*
Tt is easily seen that the hermiticity of the K implies that of the ®, . It is
thereby possible to introduce probability distributions attached to the so-
lutions of (8), since:
d [

7 — | |4 2 = 0.
(4‘) dtjl/f(t)[ diu

u-space
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3. — We must now examine the methods of integration in the u-space.
The simplest way of introducing the integral in the u-space consists in tak-
ing a discrete and complete orthonormal set of functions ¢,(7), @,(7), ... and
expanding w(r) and y*(7).as follows:

aipy(z) .
1

(48) p() =D ap,t),  prr) =
: £

TMs

The @ and a* have the commutation rules

(49) [ay, 03], = 6,4, (@ ap], = [af, 0], =0

and the operators N,
(50) N, = a}a,,

have the eigenvalues 0 and 1 or 0,1,2,... (co) when the signs in the com-
mutation rules are -+ and —, respectively, as well known (see the section 4
of reference (6)). The N, are a complete set of commutable operators and
the functional y can be taken as a function of their eigenvalues N, In this
case we have simply:

e f reds = 3 gF (N0 Ny )iy Ny o).

p-space

In this representation the wave functional of the vacuum is obviously:
(52) Xo(N') =TT 041, -
3 . A=1 A

The yu(71, ...y T,) can be expanded as follows:

(53) Xn(Tn ooy T,,) = z X/l,,...,i.n(p;i(rl) (P;kn(Tn) ’
A
(54) Xy = ay ... “;:Zu .

It is easily seen that

(65) x(lf:..,l,. = 4 g+ (dey ooy },")6},/ 61’1' H 61\7,‘0 4
A1 l,vlj.;ezl,...,l,, A
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g+(Ary oy 4,) being equal to 1 when all the Ay eeey A, ave different and other-
wise equal to 0. When the sign in the commutation rules is — there will in
general be s, of the 4,, ..., 4, equal to Z;, 8, equal to A, ..., s; equal to 2, with
Sy + 8 + ... +8;=n. In this case we have:

(56) X;.:”,A”= \/g—(lu 5 V) ‘5‘\'1’, 8y /1’ (SNA, 85 H 51\7’ 0

1

(57) 9=(Ayy ooy An) = 811850 ... 850 .

It is easily seen that the y,(ty, ..., 7,) are normalized as follows:

(58) (;gf,i)(‘rl, oo ) X:,i)(rl, b, ) :/ (i)*(rl, g 'L’,,)Z:,'i)(r{, vy Tp) dp =

p-space
= n! 6:1:}:)(7’ T/)(Sn,n' ’

]. ’ b ’ ’
(59) Ops (o 20) = = 2 Mm—1,)0(m— 1) ... d(1, U

N2 permut. &

drmn—1)  STi—7Ta) .... O(m—71l)
T 0(Te—7T2) ... O(ta—71.

(60) (3:;”('[, Tl) el _}_ 5(1- Tl) (T- 72) (T- T) :

n!
0Ta—71) OTn—712) .... O(Ta—1)
It results from (9) and (58) that:
(61) fx ydu = SU*SU + z (AT, T,,)[zdrl weidToy,

p-space [)

and also that

1 4 1
(62) Pa(ls Tag eees Tu) = \/—”"/ LA (Try ooy Tn) dp = Pt [ngw(r,,) e (T due
'p-spnco i-s ace

By taking into account that ¥,(t; 7y, ..., 7,) is either symmetrical or anti-
simmetrical we get:

(63) (@) [ Palt; Thy oory TIP*(T) oo p*(T0) o A} oo Ay =
0

= 1’1/’{/"(t; TITs v B n) Y (T A (T i) s Qs T »

Q2
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Hence
(64) w(12)1p(11)/¥/1z(t; T13 vy Ty )P (1) e p ¥ (T2) 40074 .. ATy =
o]

= n(n— 1)/ I 5 Ta 3 Tny Wy o Ko ) PN M P o) 1T o A
2

and after n steps we get:

(65) (@) P (Taca) oor P(71) [ Palls Ty ooy T La(Ty ovvy o) Ay .. ATy =
2
= P (s Ty e -y T )0
By combining (65) and (17) we, obtain equation (18).
The general solution of equation (1) can be expressed in terms of an ope-
rator U,(t) such that:
(66) Vo(t) = Un(t—1)¥allo) ,

U,(t) is determined by the equations:

(67) i%t U.t) = K,U,(t) UA0).—1..

In a similar way the general solution of (8) can be expressed in terms of an
operator Q(t) such that:

(68) : x(t) = UE—t)x(%)

U(t) is determined by the equations:
.d
(69) i3 U = RAUW) U@O)=1.

When n << s we shall take:

1 ’
; z C(a)(Tl g eeey Tl“) .

Uisensl

(70) Ko (7, - = i

o

We shall now prove that the relation between Ql(t) and the U,(t) given in
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reference (6) is also valid in the general case we are considering:

LD |
(71) UEt) =Py + 3 5 W) R 2 @) TS Tio ey Ta)”
n:_-l /-.
9

Ay(ry) . p(Ta)} dry ... dT, P, .

The P, are the projection operators on the linear manifolds of the y-space
corresponding to the eigenvalues n of NGs::

(72) N,P,=nP,, P,Po—=08,P,, SP,=1.

n=0

We must prove that the right hand side of (71) satisfies theé two equations (69).
The proof regarding the second equation (69) is the same given in section 3
of reference (6). In order to show that the first equation (69) is satisfied, we
shall use equation (36) and take into account that N, P.y is equal to nP,y
for any y, so that the product of more than n operators y applied to P,y is
always 0, as a consequence of (33b). Thus we get:

% 1 3
(73) M 7(/ PH(Ta) o p* @) Un(ls Tay oony Ta) @)oo w(Tadf dry oo AT, Py =
Q
e 77 e A
i P¥(Ta) e ¥ T)E(Try ooy Ta) Un(ts Tay oony Ta){9p(T1) oo w(T0)} A7y . AT, Py =
o
i 0 E Y
== v ()i X ()T (C55Try ooy Ta) {0(T0) oo tp(T,)} Aoy s dn Pays
o

This equation shows that the series in the right hand side of (71) is a solution
of the first equation (69). From (71) we get again the expansion (9) with:

(74) A (3 Ty e i A== (U T T A (0T s s T ) g

]
(75) Wﬂ(o; Tl7 sie &y TH)ZO = — 1/)(7:71) LOO '(/)(TI)PHX(O) 2
3 V!

Equation (74) is equivalent to the set (44). Therefore equation (71) describes
in the most complete way the relations between the «second quantization »
formalism and the formalism in the configuration space.

We shall now complete the spectral decomposition of N, by introducing
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the projection operators P(Ty, ..., T,):

il
(76) P(tyy oy Tn)x =3 o (Tloheds r,,)fxf(rl, s To)y A,
u-space
1
(77) B (Tt Vo) — e WE(T1) oo W¥(T) Poyp(Ta) .o 9(T1)
(718) P, ———/P(rl, ey Ta) ATy .. AT, -
2

Equation (78) is easily proven by showing that the operator in its right hand
side leaves invariant any eigenfunctional 3™ of N, corresponding to the
eigenvalue n and annihilates all the ™ for n's« n. We get from (58) the
orthogonality relations:

(79) P (11 501003 Tp) BTy ey BN Br 0 Ba(%) ©) PGy o Th)

It follows from (78) and the third equation (72) that:

(80) Py + > | P(ryy ey Ta) Az ..o dz, =1,
n=1,

Q

4. — The y*-representation.

We shall now develop a special formalism for the case of commutation
rules with sign minus. This corresponds to the usual second quantization for
bosons in the quantum mechanics. The formalism we shall develop is related
to the Fock theory of the harmonic oscillator (¢), which was extended by
Dirac (°). Our treatment differs from that of the Dirac formalism by the defin-
ition of inner products of functions of a complex variable by means of two-
dimensional real integrals, instead of the complex contour integrals used by
Dirac. Our point of view corresponds to that more usually taken in the
theory of orthogonal systems of functions of complex variables (see S. BERG-
MANN: The kernel function and conformal mapping (New York, 1950)).

The commutability of the w*(r) at all the points of 2 allows us to take
the operator u* as a multiplicative numerical factor. The commutation
rules (3) are satisfied by taking y(r) as the functional derivative with respect
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to p*(z):
(81) WOt = v* @7, B0z =
opX = ¥ (T)x PT)jopX = Sp*(z) ’
, ool , N Oxlv*] ,
(82) 5o (2) {w*(@)lv*]} — p*(') St @) = O —7')y[p*].

In this y*-representation the y are functionals of a complex function of real
variables y*(z). This representation was already used by Fock () in his
work in quantum electrodynamics. We shall assume that the functionals 2
can be expanded in Volterra series

L | 6n *
(83)  2lw*] = #[0] +glm {51/)*(171;)6[.1./? 6(;)*](1,,) }(w.w P*(11)en p*(z,) dry .drs

which are the analogue of the Taylor series in functional analysis. The wave
functional of the vacuum is simply a constant and, more generally, the eigen-
functionals of N, corresponding to any integer eigenvalue n are polynomial
functionals y™ of order n:

1
(84) 2 p*] = = f@n(rl, ey Ta)W¥(T1) oo ¥ () A7y .. A7y
I

(85) p(T)Mlyp*] =

Oym 1 ['
= = D, (T By St )P (v5) < ¥ (Taz) A7y o dzy,
op* —1)!
p*(r) (n—1) é
(86) Nopx™[v*] = / Yon(T)op (7) ATy [ 9*] = ny™[y*].
2

The Volterra series (83) can be written as follows

Lo |
(87). xLw*] = 4[0] + gl = f D (T1y oor To)P*(T1) oo p*(T,) dry ... ATy
2

with

Oy y*(7)]
(88) (D,,‘(‘L'l', ey Ta) = { 61/)*(7;1) (Sl/,‘*(Tn) }(V"‘=0) :
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and by taking into account (86) we see that the Volterra series is essentially
the same as the Fock expansion (9), for commutation rules (3) with the sign
minus.

The yp*-representation is not of the kind ordinarily considered in quantum
mechanics, because the basic operators u*(r) are not hermitian. Thereby
methods of the theory of the orthogonal functions of complex variables must
be employed. By introducing the expansion (48) of u*(r), ¥ becomes a
function of the complex variables a;. We shall use the following definition
of the inner product of two functions G, and G, of n complex variables z,, ..., 2,:

(89) (Gi(#1y ooy 22)y GalRry 500y 20)) =

_ﬂ_rlf{G (215 - 7zn)} "Gy (21 - .y %) e\p[ Zl ]dx]dyl"'dx"dq"’
i=1

(89a) z; = Rz, Y, =Imz,.
It follows from (89) that

(90) (Z;:, z::) o 7.1! 6!, 1, 61'11' ’
so that the functions (r,!...7,!)"%] ... 2[» constitute a complete orthonormal
set. It is convenient to write:

+
(91) (Gl(zu veey Zn)y Go(Rry eey z,,)) = /{Gl(zly ey zn)}*Gz(zu ey ®y)d2y .. dz, .

-

The above method of definition of the inner product can be immediately
extended to the case of functions depending on a countable infinity of inde-
pendent complex variables, such as the wave functionals y[%*]. By intro-
ducing the expansion (48) into (87) we get:

e
(92) wv*] = 4, + Z =i

£ %
zz Ay ay wee @3 s

020)  Ao= (0],  Ai.py = [ Paltns o TF(T) e pis(T) dry e s
Q2
The inner product of two functionals y, and y, is:

(% .« @)
Z A3, A3,

Ay sn

(93) (20 = AP*AP + 3 =
n=1
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The A;,...4, are symmetrical with respect to the indices, so that there are
n!/g_(A1y ..., A,) terms in the series in (92), for each set of values of the indices,
g-(A1y ...y A,) being defined by (57). There is a cancellation of two factors g-
which leads to (93). In particular the normalization condition is:

=l
= %O+ 3 —

n=1

- f|@,,(r1, At 7o bl 2 el [ A
Q
The inner product defined by (93) may be considered as obtained by a
special kind of integration over the variable p*:

(95) (L w*]y xe(y*]) =/{x1[w*]}*xe[w*] dy*,

{G(21, ..., 2,)}* is an analytic function of 2f,..., z* when G(z,...,2,) is an
analytic function of 2y, ..., z,. In a similar way {y[»*]}* will be treated as
a functional of »(z). The matrix elements of the linear operators in the y*-re-
presentation will be denoted by (y*|a|y'>, in order that the «index » at
the right hand side behave as the argument of a x* and the «index » at the
left hand side as the argument of a y. Whenever an integration of the special
kind (95) occurs there are two arguments in the integrated quantity which
behave as a p* and a y. Thus the trace of an operator & will be the integral

[<y* ||y ap>.

The ordinary rules of matrix multiplication must be slightly modified in
the p*-representation, in order to take into account that the summation over
the «indices » is a dy* integration, in which in one of the factors appears an
argumént w and in the other factor an argument p*. The' situation is ana-
logous to that of the tensor calculus in which the summations affect a lower
index and an equal higher index.

5. — The Gibbs second quantization.

We shall now consider a quantum mechanical system X whose wave function
depends on a variable point 7 in a certain space 2. If the X' system is formed
by n spinless particles, its wave function will depend on a point 7 of a 3n
dimensional euclidean space. In the case of a quantized field, the wave
functional of the field may be considered as a function of a discrete infinity
of variables, = will then be a point in a suitable sequence space. We shall
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assume, as we did until now, that we know how to define an integral over
the space 2, as happens in all the cases of practical importance. The hamil-
tonian of the system divided by % will be denoted by K. K is a hermitian
operator.

In order to get the special kind of second quantization which will be called
the Gibbs second quantization, we shall apply the mathematical procedure
developed in the preceding sections taking

(96) K=K, K,=0, forn>1

with either of the signs in the commutation rules (3). The operator R is
now simply

(97) R — /w*(r)Ky;_(r)dz,

Q

and the equation of type (8) for the wave functional y becomes:

d
(98) zdfzfzp*(r)Kw(r)dzx.
2

The Fock expansion (9) is

)

R
(99) x@) = Poyo + 2 —77' f Lo (5. Tay sosy Tn) A (T yienss TG AT
n=1 .
0

the ¥,(t; 71 ... T,) being solutions of the Schrodinger equations for n similar
non interacting systems:

n

: Y .
(100) ) —a—tY/n(t; Wiy, wing: Da)ies o ) (s g s gilinl -
=1 .

It results from (68) and (99) that:

(101) (2, 2(8)) == | ¥,

2 —|— z ,Wﬂ(t: Ty eeey Tn)’2dTl .ee dT" .
n=1
2

The structure of (99) and (101) shows that y(¢) describes a grand ensemble
E(t) of systems X, i.e. a set whose elements are assemblies o« of systems 2.
We can imagine a random extraction of elements o of the set €(t) with a
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probability D(t; n) of extracting a n-system assembly at the time . We shall
introduce the following rule of physical interpretation:

(I) The probability of extracting a n-system assembly in a random choice
at the time t from the grand ensemble € described by the normalized wave functional
x(t) is given by (y(t), Py(t) = / |Walt; 1y oory 7o) |2 dey oo dTyyy Py, being the pro-

b :
jection operator of N corresponding to the eigenvalue n. The wave function
of the n-system assembly is W, (t; Ty, .oy Tn).

Having extracted an assembly of n-sytems from €(t), we can make measur-
ements of the physical quantities of the systems of the assembly, which are not
interacting, as shown by equatibns (100). The probabilities of the different pos-
sible values of a quantity A are given by the ordinary interpretation rules of

-the quantum mechanics. For instance, when it is possible to define an element
of volume in 2, the probability of finding the n systems of the assembly in
the elements of volume dz,...,dv, is |¥.(t; Ty ...y Ta) |2 A7y ... 7, [D(E; 1) .

The wave function ¥,(t; 7, ..., 7,) of the assembly is either symmetrical
in the 7, ..., 7,, when the sign minus is taken in the commutation rules (3),
or anti-symmetrical, when the sign plus is taken. Inboth cases |¥,(t; 7y, ...y T0) |°
is symmetrical and the n systems are not distinguished.

' Let us consider an hermitian operator 4 describing some physical quantity
of a system X. We ghall introduce now the spectral decomposition of A:

(102) A = Z.lepA/ (z Py = glEss PPy = pA’(sA'A”> .
A’

Al

The A’ are the eigenvalues of A and the p, the corresponding projection
operators. The probability of finding the values Ai,'..., A:; in measurements
made on the n systems of the assembly at the time ¢ is

/W:(t; T sl DI 2 D (T B (5 Tyse vy Ty) Ay oo AT [ DL )
5 A

according to the rules of the quantum mechanics. For the purposes of the
statistical quantum mechanics it is convenient to consider the expectation
value of the number of systems in which a measurement of a quantity A at
the time ¢ gives the values A’. In this expectation value there is of course
an averaging with respect to the possible number of systems in the assemblies o
of the grand ensemble €(f). We shall prove that this expectation value is
(x@), D, x(t)), with a normalized y(t), as a consequence of the interpretation
rule (I), with

(103) Dy = / p*@)pay(r)dr.
(e}
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Indeed, we have

(104)  (20), Pur0) = 3 (20 PuPruglt) =

n=0

= fY/ £5 Try eosy Tn)Walls Tey veey Th)*
n-=1’n

'(x,,(rl, sesy r"),/w*(r)pA'w(r) dr x,,(r{, o '1:,',)) dry...dr,dr; ... dr, =
2

@

1 & ’ 7 4
. z _'-/A{T;k(t; Tl’ seey Tn) z pA’(Tl)gln(i; T17 sisivly Tﬂ)}'
n=1 M. =1
2

(2a(Tey ooy Tu)y LnlThs oevs 7,))dz; ... dz, dr; ... d7, —

==y PE ) Z])A (T)a(t; Tyyeeey Tn) dry ... dr, .
n=1_
2

In the derivation of (104) we used the following formula: |,

(105) DByn(Try ooy Tp) = z {B(TI)X:(TU cey fn)}*
(106) B — /w*(r)B(r)y)(r) dr (B = B¥).
L

It follows from the commutation rules (3) that:

107)  [B, p¥(m1) .. 9*(a)] = {B(r)p(v1)} *9*(12) ... p*(v,) +
+ w* T B(T2)p(72) } ¥ p*(T5) .. 9*(T2) + ¥ (1) ... Y*(Ta1){B(T0)p(Ta)} ¥ =

=1 ZB (T)w(Ts) ...1,0(11)} .

l=1

Equation (105) follows immediately from (107) and (10). We get from (107)

n=1 l=1

o 1
(108) By =3 m[{ZB(r, i T,L)}xn(rl,.._, N
2

and thus we obtain a formula more general than (104)

(109) (x(2), = i [T,, (@5 Ty oeer Th) z B(T)Wa(l; T1y ooey Ta)lOTaee- 0, .

l=1
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It results from (102) and the above derived expectation value of the number
of systems in which the measurement gives a value A’ of 4, that the expect-
ation value of a quantity A in the state of the grand ensemble described by
the normalized y(t) is (y(t), Zx(t)), & being the yx-operator formed with A
by the rule (106). Thus we get the second rule of physical interpretation:

(II) The expectation value of a physical quantity A of the system X in the
state of the grand ensemble E(t) described by the normalized wave functional y(t)
is (x(t), Ax(1)). ‘ '
The @,. are closely related to the operators N, defined by (50). Indeed,
let the p, be the projection operators associated to the functions ¢,(r) of a
complete orthonormal set

(110) ¥ (%) / oF ()P ar,

we have

(111) D; = f p¥(r)pay(r)dr = ’Z”a,f/ayr [qpf,(‘r)plqaln(r)dr:afaa,
Q2 oy o

hence:

(112) D, =N,

When the eigenvalues of A are degenerated, the corresponding projection
operators p,. are sums of one dimensional projection operators p%? corresponding
to a complete set of orthonormal functions for the eigenvalue A’:

(113) Pur = Z P POPP = P05 .

(114) D= zf TpPydr = 3 NG .

It is convenient to use the following notation:

(115) NA' = @A'

Thus we have:

(116) A =Y AN,
T
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The N are of the same kind as the N, defined by (50). They have the eigen-
values 0 and 1 or 0, 1,2, ... (co0), for commutation rules with the signs plus
and minus, respectively. Thereby the eigenvalues of the N 4+ are always posi-
tive integers or 0. The N are operators for the occupation numbers of the
pure states ¢i’. N, is the operator for the occupation number of the mixed
state corresponding to the projection operator (or von Neumann density
operator) p,.. We shall call & the y-operator for the physical quantity A.
Equation (116) shows in a suggestive way the relation between the Gibbs
second quantization and the ordinary quantum mechanics.

In the ordinary form of the statistical quantum mechanics, the condition
of a system X is described by a von Neumann density operator R

(117) BR=>wp,,. w, > 0
7

the p; being the one-dimensional projection operators corresponding to the
orthonormal states ¢, and the w, their weights in the mixture R. It is often
convenient to normalize these weights:

(118) Dhy ==
7

We can generalize the definition of the N 4 in order to get an operator for
the occupation number of a mixed state R:

(119) N, = / p*(1)Ry () dr .
e

The Schrédinger equation for the pure states of ¥ is replaced by the von
Neumann equation in the case of mixed states:

., AR :
(120) il e [H, R] (H=17%K) .
We get from (120):
. d
(121) ? FT) Ny = f P K, R(t)]y(r)dr = [Ry Naw] -
2
In the derivation of (121) we used the formula: -

(122) [, ] = [ y*(@I4, Bly()dr .
3 2
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It follows from the comutation rules (3) that:

(123) ADB = /‘w*(r):l(r)'zp(‘r)tp*(t')lf(r’)z/)(r’)dr(lr’ =

Q2
= [P OA@BEYE dr + [y H ) ADBE ) () drde.
Q2

2

Equation (122) follows immediately from (123). Equation (122) shows that
the y-operators corresponding to commutable quantities are also commutable.
In particular we have:

(124) (D D] =0. (4, A" = eigenvalués of A).

The unitary operator of the motion of the Gibbs second quantization for
a time independent K is:

(125) (t) = exp [—itR] = [] exp [— itK'D,.] .

. . . # . .
The operators which commute with ® are the integrals of the motion. Their
expectation values are time independent:

(126) (), x(t)) = (x(0), exp [itR]A exp [— itR]%(0)) = ((0), F x(0)).

In particular the y-operators & of the quantities A which commute with K
are integrals of the motion since:

(127) [, R] = /zp*(r)[;i, Klp(r)dr = 0.

Q2

The occupation number operators corresponding to the eigenvalues of an
operator which commutes with K are integrals of the motion of the Gibbs
second quantization, because they correspond to the p,. and the p,. are com-
mutable with K :

(128) [N,,R®]=0 when [4,K]=0.

It is important to notice that the N¢ in general are not integrals of the motion’
since in general K and p%¥ are not commutable.

We shall consider now the states of the form:

(129) 1) = [ @ D@ dr, (1), 20) = [P 0)[dv=1.
2 Q



26 M. SCHONBERG [722]

These y are eigenfunctionals of N, corresponding to the eigenvalue 1. In
this particular case we have:

(130)  (x(t), Naz(®) = [ W*(t; Dyps(t; ) dv =
o

= ’ Y05 7) exp [itK |p; exp [— tK]¥P(0; 7) dr ==
Q :

= f Y03 1) exp [t ()]pa(r) dr [ @ (') exp [ itK () J¥(0; ') o' =
Q

Lo
= ‘ [ @¥ () exp [— K] P(0; 7)dr
15}

The expectation value of N, at the time ¢ is now simply the transition proba-
bility of X' from the pure state ¥(0;7) to the state g,(r). In particular
when ¥(0;7) = ¢, (7)

(131a) (Z(O); NAZ(O)) = 5}.,/1“ :
We see that ¥(0; 7) is simply the wave function of X' at the time 0 and ¥(t, 7)
its wave function at the time ¢.

The above results show that the Gibbs second quantization may be con-
sidered as a statistical generalization of the quantum mechanics. In the next
section it will be seen that the results usually obtained with the von Neumann
density operators can also be derived with the Gibbs second quantization.

6. — The Gibbs second quantization and the von Neumann statistical formalism.

Let us consider a complete orthonormal set of functions ¢,. In the re-
presentation in which the &N, are diagonal, the wave functional y is a function
of the eigenvalues N, of the N,. We shall now examine especially the wave
functionals of the form:

(132) 20, N') =TI 0y »
2 A2

x(t; N') describes the motion of an assembly of non interacting systems 2,
such that at the time 0 there are n, systems in each of the states ¢,. In the
~ von Neumann statistical formalism the same assembly of systems is described
by the operator E(¢) satisfying the equation of motion (120) and having the
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initial value:
(133) R(0) = 3 mp, .

A

The wave functionals y(f) which take the form (132) at one instant of time
are not the only solutions of (98). Thus we see that the Gibbs second quan-
tization is a more general statistical formalism than that of the von Neumann
assemblies.

In order to see more clearly the equivalence of the above class of solutions
of (98) and the assembly of systems defined by E(t), we shall compute the
expectation value (x(t), N,x(t)). We have:

(134)  (x(8), A1) = (£(0), UTOFAU () 1(0)) = (1(0), A (1)2(0)),
(135) HA(t) = AU~ (t)AU (L) .
 (t) is the time dependent operator which corresponds to & in the Heisenberg

representation of the Gibbs second quantization. In particular when & cor-
responds to the quantity 4 we have

(136) f p*(7) w(T) dr :

A(t) being the operator for the quantity A in the Heisenberg representation
of 2':

(137) A@) = U@)AUt) .
U(t) denotes the unitary operator of the motion of X, which was denoted by

U,(t) in the notation used in equation (67). Equation (136) is obviously
satisfiled at the time 0. Since

(138) : ig—tmt) =[#(), R],
and
.d
(139) T f p*()A t)yp(r)dr =
2

_f *('r [A(t K]W dt e [/w* ( )dTa ’

Q
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equation (136) is proven for all the values of ¢. It results from (111), (112)
and (136) that

(140) N,@¢) = /’/’*(T)p"(t)w(r)dt:,lzy ay, a, /q (T)pa(t) P (r)dz
o A

and since

111)  [pp@mtep@dr = [ ¢ @U@ dr [ gF @U@,
2 Q

‘2

we have:
(142) N,@#) =3 afiauC A | U-(8) | ADA| U )| A"
;.I’AII

{A'"|B|A") denotes a matrix element of a X-operator:

(143) KA'|BIA"Y =./¢§(1)qu(r) dr.
Q :
The operator U(t) being unitary, U-! = U* and we have:

(144) No@®) =3 afiauCA| U@ |2 %A U@)|A"D.

A

It follows from (134) and (144) that:
(145) (x(; N')y Nay(t; N')) = AZM,IV[QMU MAD

The expectation value of the number of systems in the assembly described
by R(t) in which a measurement of a quantlty B = zl’lpl, with non dege-
nerated eigenvalues, gives the value P is:

(146) Trace {p,R(t)} = (A|R(t)|4) .
It follows from (120) that:

(147) E(t) = U@)E©0)U~-*(t) = z"z (t)p U1(2) -
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Thereby we have:
(148)  CAIRW®)| 2> = 3 my [ 9F @ U()par U*O)pa(r) dr =
).I o
0
- ;m:](ll Ut)| A |2 = (x(¢; N'), Nyx(t; N')) .

This equation shows that the description of the motion of the assembly given
by the von Neumann operator R(t) is equivalent to that given by y(¢; N').

The U(t)p,U-'(t) are the projection operators corresponding to the wave
functions U(t)p,. Therefore (147) gives the spectral decomposition of R(t).
In the assembly described by R(t) there are n, systems X in each of the states
U('t)?pl. Since

(149) [ W @pal—tip(e) dr = Ny(—t) = @@ N1,

Q

and

(150) | p*@)U@pa U= 0)p(r) dv g(t; N') = U@)N;5(05 N') = ma(t; N')

Q
there are n, systems X' in each of the states U(t)g, in the assembly described
by x(t; N'). This shows clearly the reason of the equivalence of the two

descriptions of the assembly.
It results from (138) that:

d =
(151a) z@ p(t; 7) = K()p(t; 1),
g .d
(151b) — i3 ¥t T) = {K@y(t; 1)}
p(t; T) has the same equation of motion as the wave function of 2/, hence:

(152) pit; 7) = U)p(a) -

It is easily seen that as a consequence of equations (151) we have:

(153) zg—i {w*(t; v)p(t; T')} = K@ )p*(t; ' )p(t; o) — {K(@")p*E; 7")p(t; T)}*.

The matrix elements of the von Neumann operators R(t) in the representation



30 M. SCHONBERG [726]

in which the 7z are diagonal have an equation of motion of the same form
as (153):

(154) z% | R@) |7 = K(x"){"| R(t) |7'> —{K(x' 7' |R@) |7">}* .

Let us introduce the operator o(t'y 7"):

(155) o(t'y 7") = p*()p(r"), o(t; T/, ") = yp*(t; T )p(t; ") .

We shall now prove that:

(156) (7" B(t)[7) == (x(t; N'), o(t', 7")5(t; N')) == (#(0; N"), o(t; 7', 7")(0; N")).

The above results show that the expectation values in (156) satisfy (154), so
that it is sufficient to prove (156) for t = 0. We have

(A57)  (2(0, N'), o(z', 7")1(0, N')) = ¥ (x(0, N'), aia,u(0, N) -3 (0 )p(z") =
ZI’AH

= > @ () (t") = " R(0)|2"),
ll

thereby (156) is proven. We may consider o(t’, ") as a matrix element of
a hermitian operator R

(158) e, ") = (' |R| T
and write quite generally for a normalized x(t):
(159) R(t) = (1(t), Ry (1)) .
Equation (159) allows us to associate a hermitian operator R(¢), which satisfies

the von Neumann equation of motion (120), to any solution y(t) of (98), not
necessarily of the form defined by the initial value (132). It is obvious that:

(160) CV|R|AY = afiay .
Hence
(161) CA'|R@) | A"y = (x(t), amazx()),

so that (148) is a particular case of (159).
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It follows from (161) that

L Trace R(t) = (x(t), Nop2(®) == (2(0), Ny, 2(0)) -

Let us assume that the expectation value (2(0), N opX(O)) is finite but not an
integer, as occurs in general when the expectation number of systems in the
assembly described by x(0) is finite. The trace of R(0) being a non integral
number, the eigenvalues of R are not all integers and R(¢) does not describe
the motion of an assembly of systems X. Such operators R have nevertheless
being used and they are necessary to treat in a, general way the incompletely
specified states of motion of X.

The operator R(t) defined by (159) has in general a trace different from 1.
In order to normalize the trace of R(f) we may take

® ,

(163) Rnor(t) == (X(t), N Z(t)) = (X(t), genorX(t)) y
op

defining R/N = by the equations

R R -

164 L P— 0
(164) 7 At ) 5

1
2R = RP, for n=+-0,

the P, being the projection operators of N,,- It follows from (164) that:

R R = © 1
= Py=3 - RP,y.
e Al =Zo r=2 %

n=1 N

(165)

Ry is of course not a wave functional but a linear operator acting on the
functions of 7, as shown by (160). The nature of R as an operator on the
functions of 7 can be conveniently characterized by a generalization of (160):

(166) [ ()R (r) dr = [y Wlr) do- [ Wi @pa) dr -

Q 2 Q

We can now prove easily that the operator R(¢) defined by (159) has no nega-
tive eigenvalues. Indeed, it follows from (159) and (166) that

’

& *
(167) /’P*(t)R(t)SU(r)dr == (x(t), [w*(‘z)?{f('r)dr{ /w*(r)'{/(r)df} 7))
0 15} ’

Q2
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hence:

(168) ‘ /”q/*(r)R(t)'P(z) dr>0.

2
This equation shows that E(f) has no negative eigenvalues.

7. — We shall now examine rapidly the application of the Gibbs second
quantization to the analysis of the incompletely specified states of motion of
a quantal system X. A more detailed discussion will be givenin a forthcoming
paper.

Let us assume that the initial state of X' is incompletely known. We may
suppose that at the time 0 the value of some quantity A with degenerated
eigenvalues was measured and that a value A’ was obtained, s being the
number of linearly independent eigenfunctions of A corresponding to the
eigenvalue A’. With the available information we can describe the incom-
pletely specifled state at the time 0 by the projection operator p,. The von
Neumann operator of trace 1 corresponding to p, is:

1
(169) Ruor(0) = - P -

Let the ¢, be a complete orthonormal set of cigenfunctions of A, the indices
"being chosen in such a way that the eigenfunctions of the eigenvalue A’ be
@1y Pay -y @5 The simplest wave functional x(0; N') which describes the
incompletely specified state is:

(170) (1)( Z\T’) — 5_‘,{,16‘\.;1 ooty 61\,18'1 }—_[ 6}\",0 y
>s8

It is also possible to take any of the functionals y™:

(171) A"(O0; N')= & ,,6\,, 1_[ ‘o (r = positive integer).

A>s

The normalized von Neumann operator R, .(f) computed with the formula (163)
is the same for all the functionals 4. Thus we see that a normalized von
Neumann operator does not determine completely the wave functional y,
although the wave functional determines completely the von Neumann operator.

A slightly more complicated case is that in which the wave function
¥(0; 7) at the time 0, before the measurement, was known. The probabilities



{729] A GENERAL THEORY OF THE SKCOND QUANTIZATION METHODS - 33

of the various eigenfunctions of A’ are

|2

{172) w, = ‘ /‘F*(O; 7)@.(7) dr‘} / Es: f Y05 7)pr(t)dr f H(="1,22; s..p08)n

=1
Q

When the ratios of the w, are not all rational, it is not possible to describe
the incompletely specified state by a monomial 205 N'). In the case of
rational ratios we can choose integers ny, n,, ...y ng such that

(173) W, = i W,
N
and take:
'(174) Z(O; N’) = (SNI n 61\7',71»"' 61V’ " ]_—_[ 61\",0 .
o Sk

It is interesting to remark that in the case of irrational w,/w,, there is no
von Neumann assembly of systems which gives the exact ratios of the pro-
babilities, although there is no difficulty in representing the incompletely
specified state by an operator R(0):

175) Rnor(O) = zw,p,.
=1

In this general case it is necessary to use a multinomial y(0; N'), i.e. a grand
ensemble. :

8. — The entropy in the Gibbs second quantization.

A definition of the entropy of the grand ensemble described by (¢) can be
immediately obtained by taking into account the relation between the wave
functional y(¢) and the von Neumann density operator given in section 6.

We have
(176) S[x(t)] = — k Trace {R_.(t) log R, ()},

k being the Boltzmann constant and R .. being defined by (163). Since we
are applying the von Neumann definition to R, .(f), the entropy S[x(t)] is

time independent.



34 M. SCHONBERG [730}

There is a very remarkable circumstance in the possibility of defining the
entropy by means of the Gibbs second quantization. Let us suppose that
the systems X obey the Bose statistics; they may be atomic nuclei with even
atomic number, for instance. In this case the Gibbs second quantization is
equivalent to the theory of the quantized field of the non interacting bosons 2.
Thus we can assign an entropy to the pure state of the X boson field described
by the wave functional y(t):

(177) S,(t) = — k Trace {R(t) log R(t)} ,
(178) R(t) = (x(t), g?x(t)) 5 (x(t), x(t)) =13

In the case of fields of bosons, the association between the entropy and the incom-
plete specification of the quantal state is nmot mecessary:

The Gibbs second quantization offers new approaches to the entropy pro-
blem. Thus it is possible to introduce a kind of entropy operator:

(179) . 8P =—k 3 flogf,-
The frequency operator f, is defined by the equations
] 1
(180) f,Po=0, [P = = N,P, (n>1).
and the condition of linearity. We have:

1
(181) fax =2~ NaPuy .
n=1

f, may be considered as N,/N, . The expectation value (x(0; N'), S %05 N'))
of S computed with the wave functional (132) has the following value:

i ’ ’ ’ n,
(182) (205 3, SGON)) = —k S filogfi,  fi=s -
; %

It coincides with the value of the von Neumann entropy of the assembly
described by the R(0) in (133), but the expectation value at the time ¢ will
not in general coincide with the corresponding value of the von Neumann
entropy.

The operator 87, depends on the choice of the functions ¢,. Thereby its
expectation value does not give a general satisfactory definition of the entropy.
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Nevertheless, when the set of the ®; plays a signiflcant role, S;‘Q may be con-
veniently used. In the discussion of the statistical equilibrium the eigen-
functions of K can be chosen as the set #;- With this choice of the g,, 8z
becomes an integral of the motion and its expectation value is time inde-
pendent. In many important applications X' is formed by several weakly
interacting parts and K can be split into the sum K, of the hamiltonians of
the parts divided by % and a small interaction term pick o

(183) Be=cl, 3 K, . .

By taking the ¢, as a complete orthonormal set of eigenfunctions of K,, we

get a S which is not an integral of the motion and whose expectation value
is time dependent.

The quantity
(184) Slxt)]=—% ;(x(t), fax(@)og (x(t), f,x(0),

is also related to the entropy. It corresponds in the Gibbs second quantization
to the entropy definition of BorRN and GREEN (**). It has also the disadvan-
tage of depending on the choice of the @,. We have

(185) S [7(05 N')] = —k 3 filog

2(0; N') being the wave functional (132), so that S,[x(0; N')] has the same
value as the von Neumann entropy of the assembly described by the E(0)
in (133). For t 0, S,[x(t; N)] does not coincide with the von Neumann
entropy of the assembly. S [#(t)] is less interesting than the expectation
value of 8.

A detailed discussion of the entropy and the quantal H theorem with the
Gibbs second quantization will be given elsewhere.

9. — The ordinary second quantization.

We shall now apply the general theory of second quantization to the
quantum mechanics of systems of similar particles, in order to show how the
ordinary second quantization is contained in our general theory. IFor the
sake of simplicity we shall consider only non relativistic spinless particles of

(1) M. BorN and H. S. GREEN: Proc. Roy. Soc., A 192, 166 (1948).
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mass m interacting through central forces derived from a potential V depending

on the distance between two particles.
In the present case the equations (1) are ordinary Schrodinger equations:

0 g 7i2 n 0 \2 1 » n
(186) iﬁ‘éiyjn(t; Xyyeeny Xp) = {_ - _Z (T—> + 5 z 2 V(x,— xl’)} .

There are only the operators R, and R,:

+
2 2\2
(187) RE= f v | — 5 (a) bty e,
+
(188) IR, = % { By () Vix, — xa)p(x:)p(x,) dx, da,

Equation (8) is now the well known equation of the ordinary second quan-
tization:

+ @

d/ (o (F/Y‘” )
(189) 271 {— 27?}]1/) (=) o pix) da -+
0
1
+ Ej p¥(x)p*(x') V(e — 2 )p(x")p(x) da da’ } a7

The commutation rules (3) are now:
190)  [w(=), p*(x)] = o(x—=a'),  [p(=), p(x)] = [p*), p*(x)]L = 0.

The sign minus corresponds to bosons and the sign plus to fermions. This is
immediately seen, by noticing that the functions ¥, (t; xy, ..., x,) in the Fock
expangion are symmetrical in the case of the sign minus in (190), as a con-
sequence of the symmetry of the functionals y,(x,, ..., x,) With respect to the
%y, ...y &,. In the case of the sign plus the y, (x4, ..., x,) are anti-symmetrical
and the Y, (¢; x,, ..., x,) too. The symmetry or anti-symmetry of the ¥ is
shown directly by (74) and (75).

The relation (71) seems to be unknown. The use of the projection ope-
rators P, and P(x,, ..., x,) seems also to be new. The relations (74) and (75)
are much simpler than those which have been used in the preceding work in
second quantization.
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The operator N, introduced in the Gibbs second quantization can also
be defined in the ordinary second quantization and corresponds now to the
number of particles in a mixed one-particle state. In the paltlculfu case of

a pure one-particle state described by the wave function @(x), Np can be
denoted by N,.

+

(191) B /y;*(x)qz(x)dx -‘/.(p*(x)y)(x)dx .

—

The eigenvalues of N are 0 and the positive integers in the case of bosons and
0 and 1 in the case of fermions.

The operator A being hermitian, equation (47) holds and the nOImalized
wave functional y may be considered as a probability amplitude. |[y|? gives
the probability of the different conditions of an assembly of interacting particles,
the number of particles in the assembly being one of the variables. In the
Fock treatment (*) of the second quantization % 18 considered as a vector in
a y-space whose components are the ¥, the square of the absolute value of
a component ¥ (¢; x,, ..., x,) giving the probability density of finding just =
particles, one in each of the elements of volume da, around the point x;.

10. — The ¢ second quantization > in the eclassical theory.

In the classical theory of indistinguishable particles developed in refe-
rence (°), the equations (1) are Liouville equations for n particle systems:

A e
(192) ) %Wﬂ(t; T1y eeey Tn = { Z Ll(rl _) 2 Z L, ('Cl, Ty }Tn(wt: T1y eony T") y
¢ 9 = e :
) 0
(193) 3 Li(z)) = — 7n,p a_
: 0 0 0
(194) Ly(71y T0) = {_a*“ V(xz—:«\y)} el {ax V(xz—xl,)}~$" :

7, denotes now a point in the phase space £, of a single particle. There are
only the operators R, and H,:

°

(195) i f w*(7)Lyr(v) dr

-

(196) Ry = %f w*(fl)w*(T:)LEW(Tz)W(ﬁ)dTl dz, .

2,
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In the present case equation (8) becomes:

(197) il={[w (v)Lay(r)dr + 3 f Yyp*(x") Loy (z')p(T )drdr’}x

2

This is the wave equation for the « quantized » field in the phase space £,
given in reference (¢). The commutation rules (3) give the commutation rules
of 'reference (°):

(198)  [9(@), p*()]. = dr—7),  [9(), p()]. = [¥*@), g*@E)]L = 0.

The sign minus corresponds to the classical bosons and the sign plus to the
classical fermions. The structure of the formalism is similar to that of the
ordinary second quantization, the only essential differences being that in the
classical case the space £, is the six-dimensional phase-space of a single particle
and the different forms of the operators K. X, and R, are hermitian, equat-
ion (47) is valid and |y|® can be interpreted as a probability, for a normal-
ized y. |¥,(t; T1y.ery T,)[* d7y ... d7, gives the probability of finding just n part-
icles, one in each of the phase-space elements of volume dr, around the points
7, The probability density f,(t; 71, ..., 7,) ordinarily considered in the classical
statistical mechanics appears now as the square of the absolute value of a
classical wave function ¥, in the n-particle phase space. The Liouville equation
being a homogeneous linear partial differential equation of the ﬁlst order,
both ‘I/” and f, satisfy the same Liouville equation.

It is interesting to notice that the analogue of the Gibbs second quantiz-
ation does also exist in the classical theory. It can be obtained by applying
a «second quantization » treatment to the equation (192), the space 2 being
taken as the phase-space 2, of the n particle system. Rach n particle system
appears as-a « quantum » in this treatment and there is no interaction between
these « quanta ». In this classical Gibbs «second quantization » it is not ne-
cessary to assume that the particles are indistinguishable, they may even
be taken with different masses, since the classical wave functions can be
introduced for any hamiltonian mechanical system.

11. — The field hamiltonian formalism.

In the case of hermitian K, the general theory of second quantization
can be obtained by the quantum mechanical method of field quantization
applied to the «field » described by a function ¥(¢; 7) satisfying the non linear
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equation:

(199) iz Pt 7) = KO@P(E; ) + Sl et

a=1 (O(— 1)Y

-L/@*(t; 70) oo V5 Tae )ED(T, Ty oo Tam s HP( Tama) oo Pl 1P (50} A7y o ATy -
Q2

Equation (199) and its adjoint can be derived from the variational principle:
t

(200) sfeat=o,

o

QO g =i [ e ) & W v dr—
o]
i S‘i L [’I—’*(t; 71) oo Wt T0) KO (T ooy T){P(t570) oo L 7;’1)} dz, .5dp, =

We shall now develop a hamiltonian formalism based on the variational prin-
ciple (200). The conjugated momentum of ¥(t; v) is II(t; 7):

(202) I(t; 7) = —46‘2—— = 1P*(t; 1) .

3
5 Jl = Wit r)}

The « hamiltonian » turns out to have the same form as A:

(203) R, = [H(t;r) ?-‘P(t;z)dr—ﬁ’ =

4 ot
Q .
=5 %/W*(t; Z1) oo Pt 5 T)ED (T4 oo T){E(E; Ta) oo Pt )} ATy .. AT,
a=1 .
Jel

0 . 6 K. (t)
(204) = Yi;r)= BTG
A 2 R )
(205) P IIit;7) = — W)’

coincide respectively with (199) and its adjoint.
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The method of field quantization consists in replacing ¥(t; v) and I7(t; 7)
by operators 'Pop(t; 7) and I7,,(t; 7) satisfying the commutation rules:

[Pop(t; 7)y I, (85 T') ] = i0(z— T')
[Pop(t; 7)5 Pop(t; T) e = [T, (25 ), I, (85 7)1 .= 0 .

(206)

These commutation rules can be satisfied by taking

(207) Pop(t3 1) = p(t;7), I, (t57) = ip*(t; 1),

[v(; 7), p*(; )] = 0(r—1),
[v(t; 7), (5 7))o= [w*(; 7), p*(E;7)] = 0.

This quantized « hamiltonian » is:

Sl
Z ;f (5 T1) - (5 T) KTy, wony Ta)P(t5 T0) oo (t; 71) A7y ... d7, -
2

The preceding equations are taken in the Heisenberg representation. In the
Schrédinger representation the operators u and y* are time independent and
-satisfy the commutation rules (3) and R(f) goes over into the operator #
defined by (6). «The Schrodinger equation» is simply equation (8).

In the p*-representation we have

0 0
05) Ta/aw (‘L’“) 2o Ew*(fl)

f (71) *(T B (g

Q

RI}_A

(210) R= Z dz, ... dz., ,

so that the «Schrddinger equation» is a partial functional differential equation
of order s:

d
218 ) P . ¥ —

x Ko - ol pt] T
Agl i ] (T1) ).L (T ,Ta)éw TN T )dr, ot
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12. — The field hamiltonian formalism of a quantal system.

We shall now apply the theory of the preceding section to the case in
which only K is different from zero, i.e. the case in which (199) is linear:

(212) @-ﬂ’ — Koy
ct

We are particularly interested in the case of a quantal system X' of wave
function ¥ whose hamiltonian is #K. We shall see that the theory of the
Y-field leads to the Gibbs second quantization.

Before quantizing the ¥-field, we shall develop somewhat its c-number
hamiltonian formalism. In the «classical » theory of the ¥W-field the quan-
tities analogous* to the functions f(q, p) of the classical mechanics are the
functionals ¥ of the independent functions ¥(r) and /I(r). The Poisson
bracket of ¥, and &, is defined in the usual way:

: , ot AN 0T 0Fa
(213)  (F.[W; IT], Sl W; IT]) = [ {'6@2?) s — s &Um} e
0

The total time derivative of the functional F[¢; ¥;Il] taken along a «tra-
jectory » of the W-field is:

(214) %9’ 63 s IR = (g + (7, o).

Thereby the constants of the motion are the solutions of the equation:

(215) % + (F,R)=0.

This is the Liouville equation of the «classical » ¥-field. In the discussion
of this equation, ¥ and I7 must be treated as independent variables and we
shall write:

(216) T =,

Thus the Liouville equation becomes:

o A T oy 0T S AE L]
(217) T3 —fl?{’ (r)K I 40 KT(?:)I dr.
2
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The Hamilton-Jacobi equation of the ¥-field

d oV
218 sl o 77 A | 2 2=
(218) dtqj[t’,ﬂ ’_[W(r) K¥(r)dr = 0,
9 .

has the same form as the Schriédinger équation (24b) for the complex conju-
gated x*[¢; p] of the wave functional y of the Gibbs second quantization.

We may consider (212) as the equation of motion of a classical system with
an infinite number of degrees of freedom. If we try to develop a classical
statistical mechanics of this system along Gibbs lines, we must try to introduce
a probability density in the phase-space of this system with an infinite number
of degrees of freedom, i.e. in the space whose points are pairs of functions
(), II(r). This is in general not possible, because we cannot give any meaning
to the elements of volume of such a space. If it would be possible to give a
meaning to the probability density @[t; ¥(r); I1(r)] it would have to satisfy
the Liouville equation: .

g T oo — | weg D 6D 1
(219) i =@ [t; P(r); *()] —fl Wik T K?{/(T)J dr .

It is remarkable that by quantizing the ¥-field we get the Gibbs second
quantization, i.e. a statistical quantum mechanics of the quantal system
2" whose Schrédinger equation is precisely (212). The quantum mechanics
of X is mathematically equivalent to the « classical » theory of the Y¥-field.
The statistical quantum mechanics of X based on the Gibbs second quanti-
zation turns out to be the « quantized » theory of the W-field. Indeed, it
results from (211) that the Schrodinger equation of the quantized ¥-field is

”

2
oyp*(t) 2z

(220) i%x[t; p*] = [V)*(T)K

Q2

in the representation in which the operators u*(r) are diagonal. This is
exactly the equation for the wave functional of the Gibbs second quantization
in the yp*-representation. It follows from (220) and the corresponding equation
for the complex conjugated of y (24b) that the product ALt ¥t w'] satis-
fies (24c¢), i.e. the Liouville equation (219) of the « classical » theory of the
P-field. '

It is well known from the quantum theory of fields that the quantized fields
are assemblies of quanta. In the case of the quantized ¥-field the quanta are
systems 2. When the systems X have the Bose statistics, the Gibbs second
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quantization with the sign minus in the commutation rules coincides with
the ordinary second quantization for non interacting systems. In the case
of systems X with the Fermi statistics, the Gibbs second quantization with
the sign minus, required for the description of the mixed states of X, is no
more equivalent to the ordinary second quantization for non interacting
systems. :

The identification of the Gibbs second quantization with the theory of
the quantized ¥-field gives an intuitive picture of the extraction process of
section 5. The grand ensemble €(t) corresponds to a state of the quantized
Y-field in which the number of quanta X is in general not well defined. The
interpretation rules I and II do become now equivalent to well known rules
of the quantum theory of fields.

13. — Ergodic theorems.

Let us consider the case of hermitian operators A. We shall assume that
the time independent hermitian operator & admits a spectral decomposition:

L2 7 'y

(221) G, T DUEE =SS PP Lo P2

v

The spectral decomposition of exp [+ itR] is then:

(222) exp [+ itR] = > exp [+ itv]P,.

Let & be a time independent linear operator acting on the wave functionals .
We shall consider now the operator &(¢) in the Heisenberg representation of
the second quantization formalism:

(223) () = exp [t R]A exp [—itR] .

T

We want to compute the time average TILIQ (1/T) { & (t)dt. This time average
.
is also the Cesaro generalized limit of &(t) for ¢ = oo:

T

1
(224) H (o) :Tlim — | F(t)dt .
0

It results from (222) that

(225) @) = S exp {it(y— )} PP,

v,y
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hence:

7
1l L\p {iT(v— ')} —
22 m (v = = T ™ R .P P'I .
(226) T/ (1) dt ” T —7) Ko74

We get from (226) the ergodic theorem:

: r
a 1
(227) lim T At)ydt = > P,AP, .
I—>© v

0

(228)  (x(0), Ax()) = (exp [— #tR]y(0), & exp [— iR]y(0)) =
= (7(0), exp [# K] exp [— itR]y(0))= (x(0), Z(t)%(0)),
we have the following ergodic theorem for the expectation value (x(), Fx(1))

T

(229) Jim o [ (20, ZrO)dt = 3 (P,y(0), AP,1(0)).

0

The P, are the projection operators of & corresponding to the eigenvalues Vv,
thereby

(230) RP,=vRP,
and P x(0) is an eigenfunctional of X :
(231) RP,y(0) = vP,%(0).
Equation (229) gives the time average of the expectation value (x(), Fwx(t))
in terms of the expectation values of & for the eigenfunctionals of .
It is easily seen that we have also:

Sy
(232) }L’B?LT Z(t)At = S PP, .

==Y
It follows from (227) that &(co) commutes with the P, and with R:

(233) [Q(oo), Pv] =0, [g(oo), -7“.] =0.
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Let us consider now an operator & of the Gibbs second quantization
which corresponds to a quantity 4 of X':

(234) A = [‘w*(r)Aw(r) (Big
0

‘We have

(235) (1) = ‘/}p*(r)A(t)w(r) dz,
ke

(236) A(t) = exp [itK]4 exp [—itK],

because both sides of (235) coincide for ¢ = 0 and they have the same rate
of time variation, since

S
(287) iz | p*@AQym) dr =
Q

——f NA@), Klyp(z)dr = [[qp*(r)A(t)w(r)dr, i

Q

There is an ergodic theorem for A(f) analogous to (227)

(238) lim — [A tydi= Ap,, Apir,

I—co _['

the K’ being the eigenvalues of K and the p,. the corresponding projection
operators. We get from (235) a new form of ergodic theorem:

(239) A(c0) = 3 f VJ*(T)Z)L/APL'I/J(T)@T-

Let the ¢ be a complete set of orthonormal eigenfunctions of A and
the ¢ a simila  set for K. It follows from (239) that:

(240) H (c0) = z Al z (ﬁ)* (a) (ﬂ)(f) d_z_a*(ﬁ\ (3)

4 ,K' a/iﬁ

(241) =3 | ¢@*@)p2el (x)dzvakPa? .
£ 8,8 3
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In most of the usual cases X is formed by several weakly interacting parts 2.

K is the sum of the operators K, for the X, and the small interaction K, ,:

(242) K=K, + K, (o sl

In the usual applications the energy levels of K, are very dense.- Because
of the smallness of K, .

(243) : / PEEFE(T) dr = 0, unless K'o K/

0
Q

hence we have:

(244) l\r(a) z z (ﬁ)* p(;)(p(ﬂ )( )d'L’ a*(ﬂ) (ﬂ ) 3
£y

K""’K ﬁﬁ’

14. — The ergodic theorems derived in the preceding section can be suitably
modified to remain valid in the case in which the.spectrum of & is not a pure
point spectrum. It is convenient to introduce the abelian generalized limit:

(245) Ay, (00) = Hm 0'( exp [— ot (t) di

0

The real pait of ¢ must be made to tend to zero by positive values. It is well
known from the theory of the generalized limits that the abelian limit exists
whenever the Cesaro limit does exist and has then the same value, although
the abelian limit n:ay exist in cases in which the Cesaro limit does not exist.
We shall now replace (222) by the more general formula:

+o+ie +o—ie
(246) exp[—u}e]:_%i (j — | )exp[—itﬂ.]().——]f)“ld}. (£>0) -

—i05tie | i—l0i=1'8

(See the book of HILLE: Functional analysis and semi-groups (New York, 1948),
where this kind of spectral decomposition is studied in extremely general cases).

For ¢ > 0 we may close the integration path in the second integral in (246)
with a semi-circle of infinite radius centred at the origin and lying below the
real axis. Thus it is seen that only the first integral survives for ¢ > 0, so that:

+ o +ie
exp [— uﬂ] —_ j exp [—tAl(A— R)1da (t>0).

-—co+ze
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By taking 1 = ioc we get:

e+ io
(248) exp [— it R] = L fe‘(p [ot](c +iR)'do . (t>0).

e—im

This equation shows that (¢ -+ i#)~! is the Laplace transform of exp [— itR].
It follows from the Parseval formula for the Laplace transform (see DOETSCH:
Handbuch der Laplace-Transformation (Basel, 1950), pags, 251-252) that for
real values of ¢:

© + o

K 1 :
(249) / exp [— 20t]Z (t) dt = o (60— 1ty —iR)"'FH(oc + ty + iR)1dy .

0 —

It results from (249) and (245) that:

(250) Hap(c0) = — lun1 f + vy + o) F(R + y— o) dg/}.

JT 0—>0+

This general ergodic theorem contains as a special case (227), as can be easily
seen by using the spectral decomposition of (& + y -+ io)™?

(251) (R +yFio)=3 (v +y+io)'P,.

There is a formula similar to (250) for the abelian géneraliéed limit of A(¢):

05 e | s Tt e
(252) Aap(co _nﬁﬁla K+J i) *A(K + y— io) MJ-

It follows from (235) that in the Gibbs second quantization we have:

(253) Hap (00 [1,0 ab l/z('l') dr .

This formula gives &, (co) in terms of A ;(co).

Formula (252) gives the general solution of the ergodic problem in the
Heisenberg representation of the quantum mechanics. It is well known that
the standard form of the ergodic theory gives the generalized limit of oper-
ators of the form exp [—itK]. The content of the ergodic theorems is essen-
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tially that some geceralized limit of that operator is its projection operator
corresponding to the eigenvalue 0. This theorem is of little utility in "the
quantum mechanics, becauSe in general it gives a trivial result. In order to
get an interesting result we must ask not for the generalized limit of
exp [—itK]¥ but rather for that of exp[—itK]p, exp[itK], p, being the
projection operator corresponding to ¥. More generally we may ask for the
generalized limit of the von Neumann operator F(t):

(254) R(t) = exp [— @t K]R(0) exp [#tL] .

The same reasoning which led to (250) shows that:

4 o——>0+

+
(255) Rap(c0) = — lim cr/ K + y—i0) R(0O)(K + y + o)~ dy .

In the particular case of a point spectrum we get:

(256) Ry1,(00) == R(c0) = 3 puR(0)py:
K’
(257) Pyloo Z PPy -

RIASSUNTO (%)

Si dincostra che i metodi di seconda quantizzazione sono un procedimento matematico
generale applicabile a quei formalismi in cui compaiono equazioni lineari di evoluzione,
differenziali rispetto alla variabile temporale. Il comune formalismo di seconda quan-
tizzazione per sistemi di hosoni o fermioni, e la «seconda quantizzazione » della teoria
classica sviluppata dall’autore si ottengono come casi particolari dei metodi generali.
Esistono pitt modi per applicare i metodi di seconda quantizzazione allo stesso pro-
blema lineare, modi che conducono a formalismi assai differenti. Si applica all’equazione
di Schrodinger di un sistema meccanico arbitrario una forma semplicissima di seconda
quantizzazione allo scopo di sviluppare un nuovo trattamento della meccanica quantica
statistica (la seconda quantizzazione di Gibbs). Cosi operando, si ottiene un metodo
immediato per introdurre gli ensembles di Gibbs e i grand ensembles. Si discute I’entropia
con la seconda, quantizzazione di Gibbs. Si derivano alcuni teoremi ergodici della
seconda quantizzazione generale e della meccanica quantistica. .

(%) Traduzione a cura della Redazione.
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