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Summary. — A theory of the polarization effects in the energy loss of a
charged particle is given, in which the mechanism of the loss is different
from that of the Fermi theory. This theory leads to a distribution of
the loss between ionization-excitation and emission of Cerenkov radiation
which differs considerably from that of the theories on Fermi’s lines,
although the stopping power is not essentially changed, being somewhat
less than in those theories. This treatment leads to an increase of the
direct ionization at impact parameters larger than atomic dimensions
after the relativistic minimum, the increase being large in the case of gases.
The Fermi saturation effect of the loss at distances larger than atomic
dimensions does also exist in the present theory, although due to a dif-
ferent mechanism. The relativistic increase of the loss in distant inter-
actions is due largely to an increase of the radii of action for ionization
and excitation (Bohr-Williams mechanism), but there is also a contri-
bution of the Cerenkov radiation (Fermi mechanism). The saturation
arises from a limitation of the increase of the radii of action due to the
polarization of the medium and to the saturation of the emission of Ce-
renkov radiation. This theory leads to a modification of the formula of
Frank and Tamm for the rate of emission of Cerenkov radiation, the
emission of high energy Cerenkov radiation being considerably reduced.

Introduction.

1. — The first analysis of the polarization effects in the theory of ionization
is due to FErmMI (}). FerMI’S work was extended and improved by Wick (2),

(*) E. Fermi: Phys. Rev., 87, 485 (1940).
(?) G. C. Wick: Rie. Scient., 11, 273 (1940); 12, 858 (1941), Nuovo Cimento, 1,
302 (1943).
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HALPERN and HALL (®), A. BoHR (*) and SCHONBERG (»°). With the exception
of A. Bomr’s paper, all the above papers follow the line of FErRMI’s analysis.
The work of FermI, Wick and HALPERN and HALL had mainly in view the
saturation of the rate of loss due to distant interactions, although in FERMI’S
paper it is indicated that the Cerenkov radiation is included in the loss. The
importance of the Cerenkov radiation was first emphasized by A. Bonr (4),
who showed by an intuitive argument, and also by using FErMI’'s results,
that the whole increase of the loss at relativistic energies was accounted for
by the emission of Cerenkov radiation. At that time this conclusion did not
attract much attention, but; later on, OCCHIALINI’S measurements (?) of the
tracks of relativistic particles in photographic emulsions showed that there
was no increase of the grain density with energy within the experimental
errors (10%). These measurements have stimulated theoretical work on ioni-
zation and led MESSEL and RITsoN (8) and SCHONBERG (°) to the same con-
clusions as A. BoHR, using FERMI’S methods. SCHONBERG (°) has shown that
the conclusion regarding the increase of the loss in the relativistic region was
largely independent of the actual expression of the dielectric constant used
in the Maxwell equations for the dispersive medium, but he remarked that such
a conclusion might not hold in a rigorous quantum treatment and also that
the spectrum of the Cerenkov radiation obtained from the theory of FrANk
and Tamum (°) and FErMI (1) required important quantum corrections.

The conclusions of the analysis of the polarization effects on Fermi’s lines
seemed sufficient to explain the experimental data of OccHIALINI and the
Bristol group (1), as well as those of BoweN and RoSER ('!). However, re-
cently, experimental data were obtained by Voyvvopic (*?) and GosH, JONES
and WiLsoN (*) which cannot be explained by the theory on Fermi’s lines,
because it is necessary to assume an exceedingly strong absorption of the high

3

(3) O. HavpErN and H. Harr: Phys. Rev., 57, 459 (1940); 73, 477 (1948).
(4) A. Bour: Det. Kgl. Dans. Vid. Sels., 24, n. 19 (1948).
() M. ScuONBERG: Bull. Cent. Phys. Nucl. Bruxz., n. 20 (1950).
(6) M. SCHONBERG: Nuovo Cimento, 8, 159 (1951).
(7) G. P. 8. OccuIALINI: Como Congress (Nuovo Cimento, Suppl., 6, 377 (1949)).
(8) H. MesseL and D. M. RirsoN: Phil. Mag., 41, 1129 (1950).
(°) I. Frank and I. Tamm: Compt. Rend. Ac. Sci. USSR, 14, 109 (1937); I. Tamm:
Journ. of Phys. USSR, 1, 439 (1939).
(10) P. H. FowLER: Phil. Mag., 41, 169 (1950); U. CamerINI, P. H. FowLEr, W. O.
Lock and H. MuirRHEAD: Phil. Mag., 41, 413 (1950).
(1) T. BoweN and F. X. RosEr: Phys. Rev., 83, 689 (1951).
(12) L. Vovvopic: Bristol Conference (1951); E. Pickup and L. Voyvopic: Phys.
Rev., 80, 89 (1950).
(¥) S. G. GosH, G. M. D. B. Joxes and J. G. WiLsoN: Proc. Phys. Soc., 65,
68 (1952).
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energy Cerenkov radiation to get the experimental values of the increase of
the ionization after the minimum. SCHONBERG pointed out that the emission of
the high energy Cerenkov radiation would be improbable, according to quantum
theory (%), and proposed a modification of Fermi’s methods (%), which re-
duces considerably the intensity of the high energy Cerenkov bands and gives
a larger amount of ionization. In this paper we shall work out in detail this
modification of the Fermi theory and improve the formulas of reference ().

In the existing theory, the polarization effects are taken into account by
assuming that the ionizing particle moves in a classical homogeneous dispersive
medium and using the solution of the Maxwell equations for such a medium
given by FrANK and TAmMm (°) and FErRMI (!). Actually the solution of the
Maxwell equations is used to compute the energy loss due to interactions at
distances larger than 10-8 c¢m, the loss at smaller distances being taken from
the quantum theory of BETHE and BrocH (*¢). This procedure, originally due
to FERMI (*), was never satisfactorily justified. It seems that the validity of
the theorem of WrirLrtams (27) and BrocH (1¢), concerning the equivalence of
the classical and quantum methods of computing the average loss due to
interactions at distances larger than atomic dimensions, has been extrapolated
to the theory including polarization effects. Such an extrapolation is actually
not justified, specially in the determination of the relative contributions of
the ionization-excitation and the Cerenkov emission to the total loss. The
relative contributions depend critically on the way in which the interactions
between different atoms influence the resonance and non resonance transfers.
Tt is shown by the formulas given in references (5) and (6) that the resonances
are shifted from the oscillator frequencies w; to the zeros w; of the dielectric
constant e(w); thus a range of frequencies preceding immediately an oscillator
frequency w; becomes a non resonance region in which coherent emission of
radiation is important. On the other hand, the shift of the resonance from
w; to w; and the fact that V1 — [ is replaced by V1 — p%e(w), in the Fermi
theory, cancel completely the relativistic increase of the ionization-excitation
loss, since V1— f2e(w;) = 1. The shift of the resonance frequency w; is
approximately (4mne?/3m)(f;/w;), n being the number of electrons per unit vo-
Iume, e and m the charge and the rest mass of the electron and f; the oscillator
percentual (3 f; =1). In the neighbourhood of the path, the polarization

(1) M. SCHONBERG: Nuovo Cimento, 9, 210 (1952).

(15) M. SCHONBERG: Nuovo Cimento, 9, 372 (1952).

(1) H. Burue: Zeits. f. Phys., 16, 293 (1932); Ann. d. Phys., 5, 325 (1930);
F. BrocH: Ann. d. Phys., 16, 285 (1933); Zeits. f. Phys., 81, 363 (1933); C. MOLLER:
Ann. d. Phys., 14, 531 (1932); E. J. WiLLiams: Proc. Roy. Soc., A 135, 108 (1932).

(") E. J. WiLLiams: Proc. Roy. Soc., A 139, 163 (1933).
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effects are small and the total field is nearly the Lorentz transformed Coulomb
field, hence the times of collision are essentially the same as in the Williams
theory. The short times of collision do not allow such a sharpness of definition
of the resonances as the classical theory requires, in order to separate the
shifted resonance m; from the peak of the corresponding Cerenkov band, be-
cause of the uncertainty principle. At distances of the order of R=V 51(7"27,/74717&;2
the polarization effects are strong and the times of collision become much
larger than in the Williams theory, so that at such distances the classical
theory may be applied. It will be shown that the amount of high energy
Cerenkov radiation which remains, when polarization effects are neglected up
to distances of the order of R, is rather small.

Tt results from the preceding considerations that, at distances from the
path much smaller than R, the interaction between different atoms may be
completely neglected, because the polarization is not large and the clean cut
separation of the frequency ranges relevant for ionization-excitation and Ce-
renkov emission on both sides of an oscillator frequency w; is not allowed by
the uncertainty principle. The adequate treatment in this interval of distances
is therefore the Bethe-Bloch-Mdller-Williams theory, which is actually equi-
valent to a classical theory with the oscillator model, in what regards the
value of the average loss at distances larger than 10-8 cm.

Following strietly the lines of reference (%), we should apply the Bethe-
Bloch-Méller-Williams theory up to the distance R, and a modified form of
the Fermi theory at distances larger than R. This procedure is not very
azeurate, because the polarization effects are already considerable at distances
somewhat less than R. It is, however, possible to introduce a correction to
‘the results of the Bethe-Bloch-Moller-William theory for distances less than F,
in order to take into account the non negligible polarization effects. Instead
of solving the Maxwell equations for a dispersive medium by assuming the
dispersive medium to occupy the entire space, as was done by FERMI, we shall
first assume that there are no electrons up to the distance B and determine
the solution of the Maxwell equations for a dispersive non homogeneous me-
dium in which the dielectric constant has the value 1, at distances less than R,
and the Lorentz value g(w) at distances larger than R from the path. Thus
we neglect the effects of the polarization at distances less than R in the com-
putation of the field at distances larger than R. Our solution of the Maxwell
equations allows us to determine with sufficient accuracy the effect of the
polarization at distances larger than R on the field at distances less than R,
and thus to correct the rate of loss obtained with the Bethe-Bloch-Maller-
Williams methods.

In the theory developed in this paper, most of the relativistic increase of
the loss comes from distances less than R, in which the polarization effects
play a minor part, and it is mainly due to an increase of ionization and exci-
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tation. The increase of loss due to interactions at distances larger than 10-8 cm
is essentially due to the increase of the radii of action, i.e. to the Bohr-Williams
mechanism limited to distances of the order of R. The upper limitation of
the radii of action leads to saturation, whereas the indefinite increase of the
radii, that appears when polarization effects are neglected, leads to the inde-
finite logarithmic increase of the Bethe-Bloch-Méller-Williams theory. The
contribution of the distances larger than R includes the loss due to Cerenkov
radiation and is small. This part of the loss also gets saturated, by the same
mechanism as in the theory on Fermi’s lines. The total rate of loss is often
smaller in the present theory than in the corresponding one on Fermi’s lines,
there is also a very different distribution of the loss between ionization-exci-
tation and Cerenkov radiation. The results of the present theory agree satis-
factorily with the existing experimental data.

The solution of the Maxwell equations for the field created by the ionizing
particle and the electrons lying at distances larger than R from the path is
derived in section 2. The value of the loss due to transfers at distances larger
than R is computed in section 3. The modification of the formula of Frank
and Tamm is given in section 4. The contribution of the different oscillator
frequencies to the ionization is discussed in sections 5 and 6.

The modifications of the Bethe-Bloch-Méller-Williams formulas due to the
limitation of the impact parameters to R are given in section 7. The cor-
rections due to the action of the field of the atoms lying at distances larger
than R on the atoms at distances less than R are given in section 8. The
quantum effects connected with the short times of collision are discussed in
sections 9 and 10.

The application of the theory to the analysis of the experimental data
of GosH, WiLsoN and Jones and of Voyvopic is given in section 12.

Modifiecation of the Fermi solution of the Maxwell equations.

2. — In Fermi’s theory, the energy transferred to the medium at distances
larger than atomic dimensions is computed with the field determined by the
Maxwell equations for a dispersive non magnetic medium of dielectric con-
stant e(w):

1 H
rlzeopE:rotH-nyzj, -— =—rotE,
(1) ¢ ot ¢ Ot
div eopE == 4xj, , divH =0 ,

o denotes a circular frequency and the operator go, is:

@) o (i §t> :
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E and H are the electric and magnetic field vectors, respectively. j, and ¢j
are respectively the charge and current densities corresponding to the ionizing
particle of charge z;,¢ moving with constant velocity » along the # axis:

3) jo = 2aedl@— 1) 3(y) 8(2), j=2lo

We shall use, instead of Fermi’s fields E® and H®, fields which satisfy
the Maxwell equations for a non dispersive medium at distances from the
path less than R

. 1 N ot

L T e 1M g | e=Ve+a<B),
4) ¢ ot ¢ renee

div E' = 47j, , divH" =0 (R = ‘/-173)7,02) ¢

and the Maxwell equations for a dispersive medium at distances from the path
larger than R:

12 o oE" — totH" g LE
(5) ¢t P e c 0t

div gopE" =0, divH" =0,

= —rot E™

(e>R).

We shall denote by C, the cylinder of radius p with axis on the path. We
must fit the solutions of (4) and (5) at the cylinder C,. It is convenient to
use cylindrical coordinates (g, @, ), ¢ denoting the azimuthal angle around
the path. By taking into account the well known formulas

1 12, Rl
6 divity — == L) ®,
(6) iv i (QUQH—Q 5 +=5
(I‘Ot U)Q:} mb—-——b—l&,
o 0w ow
(7)
(ootil, = e 12 ot (rotil)s = > (oTy)—3 2w,
o 2 00 o

we get from (4) and (5) the following boundary conditions for the fields:

8) B —cpEY, E.—F:, Ei=E, H =H". (o =R)
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It is convenient to introduce potentials (A,, 4):

124
9) E:——cbb—t—gmdAo, H=rot 4.

We shall denote by (45, A") the potentials inside C, and by (A" 4™) the
potentials outside Cp. The equations for the potentials are:

19 1 1 7 lb
(10) (:5;—“>{AO,A}=4n{7mJ}7 ° o5
es “ - Eop A I8
am - (el A) S e < L

Because of the geometrical symmetry of the problem, the vector potentials
are parallel to the path

(12) 4,=4,=0,
and the Lorentz conditions can be satisfied by taking

(13) AP ’E’ i A" = %’ top AT,

since the potentials depend on x and ¢ only through the combination & — vt.
The boundary conditions for the field (8) are satisfied, by taking:

I Ix DA;: A;:l v
(14) (1 — B2)eopdl = (1 — Breop) AN, S (9 —R, = Z)'

In the case of an absorbent medium, the condition that the fields vanish
at infinity shows that we must take:

+oo
26

= — f B(w)Ky(ok(w)) exp [iw(?—t)} dw ,
e )

— O3

(15) A

16) k() =2 (1 —fe), H—o)=Ww), —F<ugho)<}

for w>0.

B(w) is determined by the boundary conditions (14). A, must be of the
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form:

AL =2 f Ky(oko(o)) exp [w) (-_¢>] dw +

i (on=1shvi=s)

The K and I are modified cylindrical functions:

Sl [ () Ly(oko(®)) exp |io

— 0o

(18) K,(u)= E xp [z /2] HS (iu) I,(u) = exp [— imv/2]J,(iu) .

C(w) is also determined by the boundary conditions (14). The first term in
the right hand side of (17) is the z-component of the vector potential of the
field created by the ionized particle moving in vacuum.

We get from (14):

(1 —p*)e(w)

1
(19) B(a))Ko(Rk(w)) = [Ko(Rko(w)) + E C(_O))Io(Rko (w))} (tﬂzg(—a‘)—)) )

~ (20) B(w)k(w)Kl(Rk(w))z[Kl(Rko(w)——-C(w) (Rko(w))] o) .

By taking into account the well known relation

1
(21) Ko(u)I(u) 4+ Ky (u)Io(u) = A2
we get from (19) and (20):

(22) B(w) = R [Kl(Rk(w))Io(Rko(a)))k((u) +

1—/3860) =

g e 1_ﬂ2 )e(w) (Rk )Il(Rko(w))ko(w) ’

(23) Clw) = [ 1_’22; - Ko(RE(w))B(w) — Ko(Rky(w)) |{ Lo(Rko(w)) .

By taking into account the expressions

Bl T e T

wlg
S|

2

2
Ky(u) ~log —, K, (u) =~
YU

(24a) (|u| <1, logy = 0,577...)
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and treating R as a variable parameter, we get:

(25) lim B(w) =1 .

R—>0

We shall denote by k. (w) the limit of k(w) as v —e¢. It is easily seen that:

(26)  lim B(o) = [Kl(RkAw))ch(w) = K0<ch<w))Rzki(w)e—ww)]_l .

v—>¢

The fields outside C, are:

+oo

en) B =—22 | Bw) (;(—1@—;92) Fy(h(w)) exp [iw (%f = t)] w0do = By B,
- _

8 m =2 f B(eo)e= (o) (o) I (gl(w)) exp [iw (%’—t)] do = Bop B,
=

@9) H"™ = HY = %g f B(w)k(w) K, (ok(w)) exp [iw (g—t)] dew = BopH®

(30) By = B (z -g-t) :

The fields (E", H") may be obtained from the Fermi fields by the application
of the operator B,.
The fields inside C, are:

(31) E'=E® + E', H=H" + H'.
E© and H© are the fields created by the ionizing particle in vacuum, they can
be obtained from the Coulomb field by Lorentz transformation:
12,6
v

32) EP = (1—p) X

+ 00
. @ ] ze(1— () (@ — vt)
X fKo(gko(w)) exp ['Lw (; —t)]wdw “Te@—pY) + @— o0’

e A gy
(63) By =" B x

o = ze(l —B)o
i (; = t)} !g) I dw = [92(1 —/32) + (g;—'vt)2]a/2 ’

+ oo
X le(gku(w)) exp

(34) H(c) - Ht(;) A ﬂEg) ;
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(E', H') are the corrections to the field of the particle moving in vacuum due
to the polarization outside Cp:

+ o
(35) B, = %2 1 / C(w)Iy(oky(w)) exp [w) (;— t)} o dw ,
+ co
(36)0 At e ff;;’\/ 1—p ] o)I(oky(o)) exp [iw (”—qf = t)} o] de
(37) e o

The field E' is finite at the position of the particle at any instant and allows
us to get immediately the rate of loss per unit length of path due to distant
interactions, since it is the difference between the total field and the Lorentz
transformed Coulomb field:

dw,, _ & ] s
(38)  — 2 =—" (v-Epart.) =—

2e?

+ oo
ﬁz)fC(a))wdw .

By distant interactions we mean always those at distances larger than R,
whereas usually the distant interactions are taken at distances larger than
10-% em.

3. — We shall now compute explicitly the value of the integral in (38) by
taking » =e¢. It results from (23) that:

dW.. 2z5e? 7 1 o( REk(w)) :
(39) da = "y gef(g(w = /3 )I(Tw) B(co)’bcu dw,

(R = real part).

We shall consider only the limit for » — ¢, because for low velocities the
contribution of the interactions at distances larger than R to the loss are small.
It results from the second equation (24) and (26) that:

. AW, ) _ 4efe Ey(RE(@) 0y 7 do
(ROrevin (— dm‘)—;)ﬁ” f [1+2~7ﬁ)(mc<w)) S(w)} D,

v—>c

(41) ko(w) = lim k(w :—\/l—sw (w>0, —§<arg\/—<g).
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The dielectric constant is given by the Lorentz formula:

fj

1
1__32 5 mn

i VJ—"V'*“U:

The »; are the oscillator frequencies measured in units « and the f; the cor-
responding oscillator percentuals. The damping constants g are positive and
very small, when there are no conduction electrons, as we assume. It is
shown in Appendix I that in the case of a complex &(w) the quantity within
the square bracket in (40) has zeros in the neighbourhood of the frequencies w,
and lying in the lower part of the complex w-plane, but has no zeros or singu-
larities within the quadrant of the positive real and positive imaginary axes.
We shall deform the integration path and replace it by the positive imaginary
axis and a quarter of circle at infinity, between the positive imaginary and
the positive real axes. We shall then neglect the damping constants. The quan-
tity inside the square bracket in (40) is real on the imaginary axis, so that
the only contribution comes from the quarter of circle at infinity. The asymp-
totic expressions of the dielectric constant e and of k,(w) are:

47202 4202 27
: el w)~1 + = ko(w) ~—— .

w2 w? i C

(43) gw)~1—

Finally we get:

(44) lim

v—>C

( dW>R> 2226*

dz | R[1+

Modification of the formula of Frank and Tamm.

4, — We shall now examine more in detail the nature of the loss due to
distant interactions, in order to separate the ionization-excitation from the
loss due to emission of Cerenkov radiation. The energy transmitted to the
medium at distances larger than p, ¢ being larger than R, per unit length of
path is:

awy
dz 47w

(45) /[E” H”]ndS L it foxgol)Ell as .

@ Q

The integral is taken over the surface of the cylinder ¢, and n denotes the
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normal component. It is easily seen that:

+ oo
11
) e __ ¢ f B ooy 1 Qo —
—o0
+ oo

Ly Io(— ) Ko k()0 deo =
= B(w)B(— ) _—ﬁ k(— ) K, (ok(— m)) Ko ok(w))o do=

-0

—p )k*(w 1(0Fk* () Ko ok(w) )iw do .

22102
w2 f l Blo (

The corresponding formula in the Fermi theory

o

dWP  2e2e2g S
G e o f (—— —p? > o) K, (0k*(w)) Ky ok(o))io daw ,
0

can be obtained from (46) by taking B = 1.
It was shown in references (5) and (6) that in the case of a non absorbent
medium (real e(w)):

awy AW® 22202 _ oo || o lo|o
| Py =R = N a= i SIS
e dw TR v? ;Soa‘” Lo %, v ) o v ) ’
dawe z2e? 1
49 e CE e 10 = - p3 d. 0).
(49) v 2 | \e@) ’3)“’ L w==9)
1-4%<<0

where — dW®/dx is the rate of emission of Cerenkov radiation per em. For-
mula (49) is due to FRANK and TAmM (°). The ag are the residues of e=%(w) at
the poles w. These poles are all real and simple, in the case of a real g(w):

s =
(50) o ==1+23 iy

elM

The contribution of the residues in (48) gives the rate of loss per em due to
direct ionization and excitation. Equation (48) shows clearly that the reso-
nances occur at the frequencies w, as it was said in the discussion of section 1.

We may expect to get a formula analogous to (48) in the present theory.
There are now some new circumstances due to the presence of the factor
| B(w)|* in (46). The @ are no more poles of the quantity under the integral
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in (46), but there are poles introduced by the factor |B(w )|2, as we shall now
prove. It was shown in references (5) and (6) that there is a pole o; of &(w)
very close to each frequency w; (@;<<w;). We may write:

| B(w) [5%(o0) K (5 ()) Ko @k(w)) = B(w)B(— w)k*(w)K,(ek*(w)) Ko(ok(w) =

_ Elew)E{gHo)
K, (RE*(w)) K, (RE(w))

Ko(Rk(wr))k(w)
K, (Rk(w))ko(w)

[R2k(w)D(w)D(—w)]™,

(52) D(w) = Io(Rko(w)) i 8_l(CU)Il(RI‘;o(w)) .

In the case of a real g(w), the function D is real and monotonic in the interval
w; — ;. Since

(83) D(@;) = Iy(Bky@,)) >0,  Diw;—0) =—o0,

there is a zero @&, of D in that interval. w, is a double pole of the quantity
under the integral in (46). When the damping of the electronic vibrations is
not neglected, &(w) is complex and its zeros w; — in; and poles w; — in; have
negative imaginary parts which tend to zero together with the damping con-
stants ¢ in the Lorentz formula (42). In the case of very small damping
constants the phase of D(w) varies approximately by — as o varies from w;
to ;. This shows that the zeros of D(w) corresponding to the ; have also
negative imaginary parts—7;. The corresponding zeros of D(— w) have posi-
tive imaginary parts. In the limit of zero damping constants, D(w) has no
zeros in the Cerenkov bands, because the ratio of the K functions in (52)
cannot take imaginary values inside a Cerenkov band. (These points are
discussed in Appendix I).

The transition to the case of zero damping, in (46), is more complicated
than in the case of the theory on Fermi’s lines, because the quantity under
the integral has poles on both sides of the real w-axis. In order to obtain a
formula analogous to (48), we shall consider equations (27) and (28) as obtained
from the inversion of a two sided Laplace transformation, instead of a Fourier
transformation, and the integration paths will be taken parallel to the real
w-axis at a distance ¢, in the upper part of the w-plane. The well known
formula for the Laplace transform of a product of two functions gives

+oo
oLy —S / B ooy B e‘(p[ 210 %} de =
+ co+id
Lk f B(w)B(2i0 — ) (L — /32) Ko(ok(w)) K, (0k(2i6 — w))k(2i6 — w)w dw .
ol () o\@ 1@

—oo+id
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By taking a sufficiently small ¢, we may keep it constant and make the damping
constants tend to zero, and then let ¢ tend to zero. Thus we get:

A P o
(55)  lim <»_ Q};%) i [lim 1zlezg_ g

g0 6—>0lg—>0 TV

+ o0+ id
xfB(w)B(%é—w (——15‘2) o(0k()) K, (0k(210—w)) k(210 —w) w dw| .
—00 + 16

The important thing is that, in the limit, we do not get the Cauchy princi-
pal value definition of the integral of B(w)B(— w)[(1/e(w)) — B2]E,(ok(w)) X
X I, (0k(— w))k(— w)w along the real w-axis, but the integral taken along the
real axis indented by infinitesimal semi-circles centred at the @, and lying in
the upper part of the w-plane. We shall denote this integration path by €
and drop the lim in the left hand side of (55):

(56) —‘%"— =g / B(w)B(— ) (é(%) —/32) Io(— ), (oh(—) Ky ok(@))eo doo.

e
o

It was shown in references (5) and (6) that:
(57) R ipk(— w)Kl(gk('— w)) Ko(ok(w))] = arg k(w) (w>0).

Therefore the only contributions to the right hand side of (56) are those of
the Cerenkov frequencies and the residues at the @,:

AWe~ - .de 1 : X
G
2 2
e 3. B,(0)63,0h(@) K k(@) Kol ghiw,)
Residue [BZ( (a(w B (o) K ok(e0)) Ko ()0
(58a)  @g(0) == —2

60:7‘7( :)Kl(Qk( :‘))Ko(Qk(CEj))

The flux of the Poynting vector through the cylinder at infinity gives the rate
of emission of Cerenkov radiation:

AW 22e? 1 . \ AWE&.,
(59) TR T (——ﬂ)!B(w)]wdw:— T
(o=
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This formula differs from that of FRANK and TamM (49) by the presence of
the factor |B(w)|? rably the intensity of the high energy
radiation. We may write:

awe dWCer 2

W = g 2 (0)0k(c;) Ky (0k(e;)) Ko(0k(05)).

The second term in the right hand side of (60) gives the rate of loss per cm
due to direct ionization and excitation at distances larger than p> R.

5. — We can compute the rate of loss of energy due to distant interactions
by using the Poynting vector of the field inside C,:

aw.,
SN e 1 K :———— E =
-~ LJ@[[YE x H'], d8 fE a8 =

Co Co

(61)

+co

. g f [EQEY + EY'E, + E.E + E,E,)dw .

It is easily seen that the terms EYEY and E,E, do not give any contribution
to (61). By working out the contributions of the other two terms, we find
again the formula (38). We shall now separate the contributions of the direct
ionization-excitation and the Cerenkov radiation in (39), by indenting the posi-
tive real axis at the @; corresponding to zero damping and making the damping
constants tend to zero. Thus we get:

aw 2232 Ky(Rk(w)) ( ) .
N — 22 T R 2B dw —
(62) de a2 I,(Rky(w)) \e(w) ) mdd
Cer bands
2202 S o -1_
28 S 1 (Rky(@5) ‘3@_} @, Residue [D(w)].
v 5 W1 — p? 3;

It seems likely that the real part of the integral over the Cerenkov bands is
the rate of emission of Cerenkov radiation per em and the contributions of
the residues the rate of loss due to direct ionization and excitation at distances
larger than R. It is shown in Appendix IT that the first term in the right
hand side of (62) coincides with — dWg/dz. Thus we get a more convenient
form of the loss by ionization and excitation.
The residue in (62) can be computed by the well known formula:

! dD\!

(63) Res;)due [D(w)]?* = (@)

j (0= w)
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In many cases of practical interest w,R/v>1 and we can determine with
sufficient accuracy @; by the equation

=, - Io(REo(w
(64) [6(@)] VI—p6(@) = —V1I—F* ] E e ;
and take
dD\-1 /328 1de -1
N i e i

For extremely relativistic particles and w;R/v>1 we get

~ w;R\? dD\-! élmw2 f, w;R\~?
(66) e(w;) =~ _( B ) ’ <d_0))~ = ey ( 2/0) )

®j

by using the approximate expression

47%0%f;

— 2
w; — w?

L

(67) : &(o) ; (0= ),

for values of w very close to @,;. The contribution of the residue at w; to
—dW,,/dz is approximately

(69) L EE), (2, 2EvimF<).

mo?

A general approximate expression of the contributions of the residues can be
obtained from the formula (9) of Appendix ITI. It results from (68) that the
contribution of the large w, is negligible, at distances larger than RE. It is
interesting to remark that their contribution is nevertheless larger than in
the theory on Fermi’s lines. Indeed, since

(69) ; Wi, = — 0,0_g, = 2n2a*f;,

it follows from (48) that the contribution of a large frequency w;, in the theory
on Fermi’s lines, is:
w;R
v

(70) >1) :

dmnaie’ wf; frs _2w,~R
me: 2 v |’

When o,R/v<1, we may use the approximate expressions (24), so that:

1 (ULR 61R dD 1de
71 e T My [ a i
( ) 8(601) = 2( ) o( ) ) ’ (dw)(w=2',l) = (8 da))w &) .
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It follows from (62) and (63) that the contribution of w, to —dW, ,/dz is
approximately

(72) 242 &1, (“"R) (d‘g)_l ; (w‘R< 1)

v dw/w=a)

and does differ little from the corresponding value in the theory on Fermi’s
lines:

22202 _ w de\-1 = N
(72a) 1: w, K, (@) (—8) , (w; 22 wy).

) v J\dw w=a)

Discussion of the energy loss due to distant interactions.

6. — We shall now compare the results of the present theory and that on
Fermi’s lines. We shall first assume that

(73) 1 —f>1,

for all the frequencies and we shall replace the I and K functions by their
asymptotic expressions

w

(74) I(u) = T K(u) =~ Véjlu exp [—u] (Ju|>1),

in equations (22) and (52). Thus we get &(w;) =~ — 1 for f<1 and using for-
mula (9) of Appendix III

~2(;..

2
(75) —

d_D)-1 _ dmnziet | RK2 (w,R) .
(w w)

dw I v

[T, Reol6,)) Bl @5)17165; ( o s

Hence the results of the present theory do not differ practically from that on
Fermi’s lines for non relativistic velocities and distances larger than .

The total loss at distances larger than R is given approximately by (44),
for extremely relativistic particles. It is easily seen that the formulas given
in references (5) and (6) lead to the following result

(76) For [ AW\ _ dmnzet - l:[w,-f ! dmndiet I,
s dx me? 2o~ me? 2nah’
’ a_ng ’
(77) fi = =f;.

Qo
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I, being the mean ionization potential of the atoms of the medium (atomic
number Z). The value (76) is, in most usual cases, considerably larger than
(44), particularly for gases. The total amount of Cerenkov radiation is, the-
refore, much smaller in the present theory than in that on Fermi’s lines, in
most cases. We shall now prove that this is due to the strong reduction of
the high energy Cerenkov bands, i.e. those in which wR/v>1. |Rk(w)| is
equal to zero at the lower limits of those bands, but has large values on a
large part of the bands and becomes infinite at the upper limits. The term with
the K, function in (22) is equal to zero at both the limits of a band and is
not very important, so that:

(78) B(w) = [To( Rko()) Ky (Rle(e)) Re(e)]* .

In the part of a band that gives the strong intensity in the theory of Frank
and Tamm, we may use the asymptotic expression (74) of K,, and since k(w)
is imaginary:

LN

(v=0c)

[L( Rl VE [ F@) ] — 2

(79) | B(w)|? =

7T w| e

The factor |B(w)|* in formula (59) cuts down strongly the intensity when
|o|Rfv>1.

It is interesting to remark that the factor | B(w)|? in (59) does not change

appreciably the intensity of the low energy Cerenkov radiation. When

|o|R/v<1 we get from (22):
R s
(80) B(w)=1, (—lwl <1, lw[¢a>.
The preceding discussion shows that the essential difference between the
present theory and that on Fermi’s lines comes from the drastic reduction of
the high energy Cerenkov radiation. Whenever the theory on Fermi’s lines
does not lead to a large contribution of the Cerenkov radiation to the total

loss, the results of both theories are not very different. It results from (76)
that this may only happen when

(81) lo

1%
pol

i.e. for condensed media of low atomic number. It will be shown later that

the loss at distances less than R is usually less than in the theory on Fermi’s
lines.
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The loss of energy in close collisions.

7. — Quantum corrections become important in the computation of the ave-
rage loss at distances less than R, as it was shown in the Introduction. It
results from those considerations that the uncertainty principle leads to a
broadening of the frequency ranges in which resonance occurs and the emission
of coherent radiation is not possible in these ranges. Since the main pola-
rization effect at such distances consists in cutting down the direct ionization-
excitation and replacing it by the emission of coherent radiation, it is satis-
factory to neglect altogether the polarization effects for p<€ R and to apply
the methods of Bethe-Bloch-Mgller-Williams. At distances close to R the
polarization effects become considerable, as it was shown by A. Bour (%).

In reference (%), one of us applied the Bethe-Bloch-Méller-Williams me-
thods up to distances R’, R’ being close to our R, and the modified form of
the Fermi theory to distances larger than R'. Such a treatment is satisfactory,
when a high accuracy is not required, and it has the advantage of simplicity.
It can be improved by computing the energy transfers at distances less than R
with the field (E', H'), instead of the fields (E@, H) used in the quantum theory
of Bethe-Bloch-Moller-Williams.

BrocH (1) and WILLIAMS (¥7) have shown, by neglecting polarization effects,
that, for distances less than R, ~10-% cm, it is necessary to use quantum
mechanics. But this is no more necessary for distances larger than R,, if only
the average loss is required, provided the atom is assimilated to a system of
classical harmonic oscillators with frequencies w; corresponding to the quantum
jumps, there being Zf; oscillators of circular frequency w;. We shall sepa-
rate the contributions of distances less than R, and distances between R,

and R: :
(82) 1 AW _, S i dAW_, — dWg, :

do de  do

— AW}, /dz being the contribution of the atoms between the cylinders Cp, and Cy.
We shall derive —dW_, /do from the Bethe-Bloch quantum treatment and
compute — AW}, /dz classically as the rate of work per em done by the field
E' on the electrons between Cj and C.. If we neglect completely the pola-
rization field E', — dWg,/dz is replaced by the rate of work done by the
field E©. It is shown in references (5) and (6) that this rate of work
— AW, /de is:
AWy, 2mnsiet

(83) — =28 =T S () Ules, Ra) — Ulws, R)]

2
(84) Ulw, 0) = ﬂsz(Qk ) K} (QI‘U ))+ Eif;(w_) KO(QkO(U)»I(l(QkO(w)) .
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For (ze*/fiv)<<1 the total loss is given by the Bethe formula

aw 2nniet 2mvBmax % ez
e Bk — —2p2 1
) ( aw )Bet. ot [l"g miop ) (W<l

when polarization effects are neglected, By, being the maximum energy trans-
ferable to an electron by the ionizing particle. In order to obtain —dW_,, /dz,
we must subtract from (85) the contribution of the impact parameters larger

than R,:

dW_, aw dw, 22
2w (8T e (il 4 S ]
(86) dx ( de )Bet. ( dz )(1;:00) ’ ('iw = ) ’

AdW_,  2mnziet 2mvil, 2,e°
1) — Tt =T o T2 5 o MW R, (S <1).

dx mo?

A more general expression can be obtained by replacing the Bethe formula
by that of Bloch, which is valid for any value of ze*/#v

| 2nnzfc4[ 2mo*Brax

R P O T

— 2 +2w<1)—°ge{w<l + i’f’*"g)}—zf,-z-('-;(wj)lf(w,, R))|,

fiw

v denoting the logarithmic derivative of the gamma function: p(u) =
= d/dulog I'(w). It is important to remark that (87) and (88) do depend
on the f; and w; individually and not only through the mean ionization po-
tential I,. This is a very unpleasant circumstance, because these quantities
are in general unknown. However, if we limit the energy transfers to a
value E' and consider the limit of very high energies, we get (*):

. awe)
GO (—le‘)—

_ 2mnzie! my*RIE' " 12,62
i, - [Iog YD —1 + 2y(1) R 1+; X

This limit value does not depend any more on the f; and w;.

(*) This formula is valid when B’ > V/ m?’ﬁ?w, For small values of E', E' <
% mczﬁ—w, the term — 1 inside the bracket in the right hand side is replaced by 0.
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A rough approximate value of —dW_,/dz can be obtained by adding
to (88) the value (83), with R replaced by R'~ 0.37R, in order to take into
account the reduction of the loss by the polarization effects at distances close
to R:

AW,
de — mo?

(90)

2qnzie 2mV2Eyax
I:(1—p%)

._w2+2wn—a@{ (-+%ﬁ)k—§anAWw“Rw.

In the next section we shall derive a more accurate expression and justify the
choice of R'.

8. — Tn order to determine the density of polarization P! induced by E’,
we shall write

+ oo

(91) E:fNMMﬂmg—NM,
—o0

hence

X 400

1i z
1 ¢ —1)é T_t)| dw
(92) P 4n(8°r’ yp (elw 1)€*(w) exp [zw (v )]
—00

— AW} /de is equal to the rate of work per cm done by E' on the electrons
between Cp, and Cg:

R 2+ o0
Aw; 1 P!
(93) —Evi‘—_—;)fgdgfd(p E‘-W>dw=
Ry 0 —oo
R + oo
= 2nf odo R | (1 — e(w)(€4w) € (— w))io do .
Ry 0 ;

It results from (32)-(33) and (35)-(36) that:

dw; d
(94) e Z‘;m: —E”—‘—}—.‘Zn[{) )odo,
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2
22e

(95)  L(o) =

(L—p?

270t

oo (o]

ge-[f f ie(w)C(w)C(— ) {(1 — p)I2(oko(w)) + Ii(oki(w))}w® do f (0)(C(w)

0

== w)) {(1 —ﬂz)Ko(Qko(w))Io(Qko(w)) T Kl(Qko(w))Il(Q ko(w))}w8 da)} .
We get from (23) and (52):

2 ol Ky(Rk,
(96) g’; e(0)[ C(0) + C(—w)] = 47;‘)‘: Sy (R o))

I, (Rly(w)) '

k(w) Ko(Rk(w)) &) k (—w) Ky(Rk(— w))J = : }_
T [D(w)Kl(Rk(w)) &(— o) D(— w) IK;(Rk(— w)) g L
2 42 Ki(R
(97) % gw)l(w)0(—w) = n(:) &(w) IZERIC EZ;_; i
o) Ey(Rk@)) | _e(@) T (o) KBk w))] K(Bko(w)) TRl —
+[ D(w) I,(Bk@)) " &(— w) D~ w) Ky Bk(— )] T(Ek) | 1

)

@le

1 Ko)k(—ow) K(Rkw))E(Rk(— v)) {n

&(— w) D(w)D(— ) K,(Rk(w) K (Rk(—w) | 4 o (_ﬂe)szIg(Rk“‘”))} '

S

We must start with a complex ¢(w) and then make the damping constants g
tend to 0. In the limit of zero damping constants, the only contributions
to Q(g) come from the poles of the quantities under the integrals in (95), since
these quantities are imaginary in the limit. The first term in the right hand
side of (96) and the first term in the right hand side of (97) have the same
poles as e(w). In the corresponding integrals the integration paths will be
indented with infinitesimal semi circles centred at the poles of ¢(w) and lying
in the upper part of the w-plane, because these poles have negative imaginary
parts when there is damping. The second group of terms in (96) and the
second group of terms in (97) have simple poles due either to D(w) or D(— w).
In the corresponding integrals, the integration paths must be indented with
infinitesimal semi-circles centred at the &, and lying above the real w-axis
in the case of D(w), and below that axis in the case of D(— w). The last term
in the right hand side of (97) has double poles at the @;, in the limit of zero
damping. The corresponding integral can be computed by the same method
applied to (46).
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We shall denote by £2,(p) the part of Q(p) due to the poles of ¢(w) and by
0,(p) the part of 2(p) due to the poles at the ®;. Tt is easily seen that:

(98) (o) = L (T —p%) E b,@5 |(1— ) Ko(0ko(@,)) Lo(0ko(@;)) —

ot
= = = 1B (Rbo(e,)) i i
— Eu(eho @) (eho@) — 5 3= ){(1 — B)I3(eho(@)) + Ti(ek(@)}
_ Ey(Rko(@,)) £ o i Eo(REy(@;))
(99) bgr— To(Bhoo,) Restgue &(w) = — 27 ﬁ—)—

The contribution of the poles @; is small at relativistic energies, since:

(100) lim Q,(p) =

v—>C

The contributions of each pair of terms within the square brackets in (96)
and (97) cancel, so that the only contribution to £2,(p) comes from the last

term in (97):

2ie?
w2 R?

(101)  2y(0) = —

1—fe(w) K3(Rk(w)) { (1 — gy D@ K@) Ii(eko(w))} P ]
A ZR“ [(1_5) (@) K2(Rh(w)) A Iz(Rk (@) + T2 (Rhko()) [ © (o))

By using the well know Lommel formulas

(102) le(lu)IL(}.u)u du = Q‘i—z [ K (Aw)I(Au) + K (Au) T,y (Au)]

(103) ] I2(Au)u du = %2 [12(Au) — Toey (M) iy (A00)]

we get: -

R R
(104) 2:;/,@1(9)9(1@%27:[91(9)9 de =
0

By

— G b S 0@ B REG) L(Rk@) + Ea(Bho@,) T(BR(@) —
)

=% vt

— 2(B*REy(@,)) Ko Rleo(@,)) [,(RRo(@;)) + I.(Rko(@;)) { Rhio(@;)Lo( Rleo(@,)) }1] -
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The integration od pQ,(p) can also be done by using (102) amd (103):

R K
(105) 27 j 2:(0)0de = 2n / Q:(0)edo =
0

202
zle

+

1— B2e(w) KiRk(w)) [ I3 (Rky(w))
- 2 Bos L—ﬁ? (Rk(w)){13<Rko<w>)

I, (Rl
2(B2Rleo()) —g;]z—ogwg = 1} w(D(w))“Z] ~

g HERSHRIE ) oo [ = ﬁ28(ﬁ”~ B* (o) Ko Rb()) Ky (RE()) X

¢ T HE\(Rk(@;) & [1—pe(
oo | BBy 5 ) Ll ]
Xk (w)w{ ITRIC———O(CU)) + 2(/3 R]w( ) IO(RIvO (@ ) 1][ :

It results from the equation (18) of the Appendix II that:
(106)  Res KT — ﬁ) Ko(RE(w)) K, (Rk(w))k(@)o X
oj

: {pﬁﬁi‘:( ki) + 2o mo i

I3(Rko(@5)) o7 1~ vy L(BEe(@)))
[I——?(Rko Yy T 2B k(@) Io(R7v‘o(63j))_1] 3

dD\—1
Ko(RH@) E(ai)<@)_2 Ci (d_a;>(w 3 -
K,(RK@,) e@)\ v ) L(Rko(@))
The residue of the product of a function Fy(u), regular at =, by a function
F,(u) having a second order pole at u is given by the formula:

(107)  Residue [Fy(u)Fy(u)] = Fy@) Residue Fy(u) 4 4 [‘EF (‘15‘ ) J _
L e (="

It follows from (105), (106) and (107) that:
L]
~ (dD\-*
2iet b az))(w:'&').‘) X

,)) k
S 2”/ O o5 2, (i) k@) TR ) RhoE)

i

><[/32{12 Riy(@)) — I3(BRo(@)} + 2(Rlo(@,) L Bko( ) L( Rho(@,)] X

@;
X |14 Iy(Rk(@ >{a;1°" L )( ) } ]

T
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The expression (66) of (dD/dw)w =g, is not sufficient, because it is only appli-

cable when |e(@w;)[>1. A more general formula will be derived in Ap-
pendix IIT:

(109)

(dD)“ 5 danef; 1—pe(@;) &)
— pre(@;)

Adw)w=up ML, (Rko(@))) 2 @;) (1 — e(@,)

The approximate expression of g(w) given in Appendix ITI shows that:

d " 3 ﬂzm(;‘),‘ (1 _'8(61))2
(110) [@“’g k(w)](w=a,, =7 dmnerf, 1— pre(w,)

Finally we get:

g(w;) \2(1—pe(@

(111)2nf Quelede=—=10 3 <1~s<ai)> (2—628(63>X

1y

X [B2{ I Rko(@,)) — I3(Rko(@,)) } + 2(Rko(@,)) Lo Rlo(@ ) I (Rho(@5))] X

X [Io(Rko(aj;‘))Il(1"3]90((:6;‘))]_2 .

This correction remains finite as » tends to c¢:

R
. dqrnaiet R\ 2\ ([ e(@;) \?
2 27 2(0) = — = j 2 . ~ :
(112) h_r>n[ Tfﬂ-(elg d@} = i ;f, Kl + ( 20) )(2_8(%)) ](Fc)

Ry

For non relativistic energies the Rky(w) have high values and the corrections
due to due to £, and £, are negligible, because of the asymptotic behaviour
of the I functions:

6“

vV 2mu

(113) I,(u) ~

[1+1—4”2+...].

8u

We get from (111) and (113):

(114a) 275[!22(9)9 do =~

1672nz2e? elw;)(1 — pre(w;)

=T Towe O—ﬂz)z[(l—sw,)@—ﬁz i)
(Vi—pr=1).

1 RE(3,) exp [— 2Rk (],
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It results from (104) that:

R
42nz2et w;R\? exp[— 2Rky(w;)]
1 2 e =L 1. g8 =)
(114b) nf!)l(e)e o= — o £*) ;f;( 3 ) Rho)) )
By
wf T T |dlv[']'I o —]  with (\/1__/32%1) .
% =5 L
1.6 -
2 Oxygen ol —% T For extremely relativistic
f/ﬂ energies the correction (111) is
“ ] o roughly equal to — dmnzie!/mc?,
b //’ s | as a consequence of (112). The-
ie V4 3 1 refore we may take in (90):
in / g |
' g 2
1 - g‘ b R
M\_/l el oA Y e _ i) logE, ~1,
E 0 107 2 (115)
Fig. 1. — Rate of ionization at~ distances larger R =~ 0.37R.

than R; = 10~8 cm.
: The saturation value of the
total loss per ecm, with transfers limited to E’, is roughly:

AWEY  27nelet my*RE 12,6° }
ol —242 —2 %R o 111
( da ) me? [log 2h? 2Ry {’/’ ¥ fic

(116) lim

v=>¢

L T 7 1T d
61§ i
2 - dws, ) Fermi_exact
a4 | Z_ dx  ‘set e dW,n, )F
) Silver Bromide o g
32 = ]
1 | [T
X -, dw.
3.0 i BN a3 )
) / dx ok
28 / / 3 3
dWary K]
26 / “ ( dx ]”"“_: —_— —|
a d—_T3
. / /| /.’—————dw: —§ 4]
3 C=8
/ //55/ ™ | Z
2.2 el
\_/f/ E/ingc,
L y bl L i
2 1 2 4 6 10 8 10° 2

Fig. 2. — Rate of ionization at distances larger than R, = 10-8 cm.

This value is smaller than that given by the theory on Fermi’s lines:

; AWEND  27pz2et 4mR2E’ 12,62
1) ) T e S —a-mmr—a [ ).

The variation of the Bethe'loss at distances larger than R, (— AW, /dZ)Bet. ,
of —dWp,/dw and of — dWz /dz with the energy of the ionizing particle are
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represented in fig. 1 for oxygen (normal conditions) and in fig. 2 for AgBr
crystals. In fig. 2 the variation of the rate of ionisation and excitation at
distances larger than R is also included (*).

Discussion of the energy loss due to close collisions.

9. — In the computation of the energy loss at distances less than R, we
took into account the interactions of the electrons of this region with the ionizing
particle and with the electrons outside Cp, but we neglected the interactions
between electrons lying inside C,. The contribution of the electrons at di-
stances less than R to the field outside Cr has also been neglected in the com-
putaﬁon of the loss at distances larger than K. If we would have taken into
account the contributions of the electrons inside Cp to the field, both within
and outside Cp, by applying classical mechanics and electrodynamics, we
would have, of course, been led to the theory on Fermi’s lines. In our treat-
ment, the loss at distances between R, and R consists of ionization and exci-
tation, whereas in the theory on Fermi’s lines the main effect of the electrons
between R, and R at high relativistic energies is, in most cases, to give rise
to the high energy Cerenkov radiation, as we shall now prove. It was shown
in references (5) and (6) that the rate of work done by the field on the electrons
at distances between p and g + dp, in the theory on Fermi’s lines, is

gy, . = 2wy, st g, 3 1@ | K 20) | gy (28
dx = mo? i v
with
(119) 2mPf; = ag,0; (fi = 1)

the notations being the same as in formula (48). The corresponding quantity
in the Bethe-Bloch-Moller-Williams theory is

(20) — 22O qp 4y S o) [Ki(ehlen) + (L —BILs(eh,)]

and in ours

dw(p) - de() 9 d

(*) In fig. 2 the value obtained with the approximate formula of Halpern and Hall
~ is indicated as Fermi approximate.
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The total loss by ionization and excitation in the interval of distances R, — R,
in the theory on Fermi’s lines, is:

R
dwr(p) danziet Ii’1 w;R =
(122) T de LS mo? ?f’
Ry
;R w;R w;R dmnaget . 2fiv
o K’( v )KU( v )}: mo? Ot’leIz'

At extremely relativistic energies the rate of emission of Cerenkov radiation
per cm is given by (76) and is larger than the value (122) for most elements
in a condensed state and even more in the gaseous state. The Cerenkov
radiation is due to the interaction of the ionizing particle with electrons at
distances larger than atomic dimensions and the high energy bands, which
account for the largest contribution in that theory, arise largely from inter-
actions with electrons at distances less than R. (This is shown by the fact
that, in our treatment, in which the electrons at distances less than R are not
taken into account in this connection, the high energy bands are practically
suppressed). Therefore, we may conclude that the main effect of the electrons
in the interval of distance R, — R, at high relativistic energies, in the theory
on Fermi’s lines, is to give rise to the high energy Cerenkov radiation, in
most cases.

In our treatment the quantity corresponding to (122) is — dWp,/dz. It
results from (83) and (115) that:

dw;, dmnziet R
123 1i —_ L) (g & loo — — 1.
(123) 5 ( dx ) me? ( LR )

This value is larger than that given by (122) in all cases, excepting condensed
media of very low atomic number.

We have already considered in the Introduction reasons for not taking
into account the field of the electrons in the interval of distances R — R,, in
the computation of the loss. We shall now examine this point in more detail.
The influence of the field created by the electrons in the loss of energy is not
of the same nature as that of the Coulomb force of the nuclei. It is an effect
of the field due to the acceleration of the electrons and the coherence of the
contributions of the different electrons plays an essential part. In order to
see whether the ifiterference of the fields of the electrons belonging to different
atoms may be of importance, we must consider the times of collision. We
(shall denote by T,(o)

(124) Tu(o) — \/1 —
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the time of collision defined, as usually, with the Lorentz transformed Coulomb
field of the ionizing particle. The important contributions to the coherent
fields of the electrons are due to particles whose phase differences correspond
to time lags 7 of the order of T,(g). It results from the uncertainty principle
that

(125) ArAw >1,

and, since we need v of the order of 7.(p), we must have

(126) Ar<L To(o)

hence:

(127) do>—2 .
29\/1 —p?

Important coherence effects can only occur in frequency intervals of the order
of w;,—w;. It was shown in references (5) and (6) that:

= _dmar, ke f,
128 JRIPNE - f1o i,
[@25) Sa=a 3w,  3E* fw,

In order to have important coherence effects the uncertainty Ao must satisfy
the condition

fic?
which requires that:
o  RI, B Z R B Ze?
130 = e : e pp e —— O z : i
(130) R> he \/1_52 13T B, v/1 — g2 G R,

Since the minimum of ionization corresponds to V1 — 2 = 1/3, the condition
(130) cannot be satisfied, after the minimum, at distances less than E. The
condition (126) is certainly too stringent, since the polarization effects lead
to an increase of the times of collision. The preceding considerations should
therefore not be valid when the polarization effects are important, i.e. at
distances larger than R. Moreover the small frequencies become very important.
In most of the interval R, — R the considerations leading to (130) are valid
and show that the contribution of the electrons of that interval to the field
may be neglected. The applicability of the classical treatment of sections
2, 3 and 4 to the atoms at distances larger than E depends essentially on the
modification of the times of collision due to the strong polarization effects.
We shall examine this point in the following section.



30 1ONIZATION AT RELATIVISTIC ENERGIES AND POLARIZATION EFFECTS [798]

10. — The value (124) of the time of collision 7.(g) follows immediately
from the formula:

ze(1— o
[o*(1 — F7) + (@ — i) P

(131) EY =

We cannot apply the same method to the case of a dispersive medium, because
we do not have any more a formula corresponding to (131). There is, how-
ever, another method of estimation of 7,(p) based on the Fourier integral (33).
Tt is well known that the duration of an electromagnetic pulse, whose spectrum
covers an interval Aw, is of the order of 2z/4dw. Equation (33) shows that
the width Aw at the distance p is determined by the condition

v
(132 ko(Aw) = 1, ) e i L
; St = oV1—pt

which leads to (124). In the case of the Fermi field, the function K,(ok(w))
is replaced by K,(ok(w)):

+ 0
(133) EP = j_;_z e w)k(w)K,(ok(w)) exp [zw (g— )} dw .

When o is much larger than the oscillator frequencies w;, we have:

4720® c?
(134) fo)=l — = =1——5m (0> w;).
Hence
2
(135) ok(w) =~ l/—Q—Rz + o%kg(w), (w>w;),

and at distances larger than R the contributions of the large frequencies to E{™
become small, since

(136) ok(w) > 1 (>w;, 0> R).

The preceding considerations show that the distance R behaves as a radius
of action in the theory on Fermi’s lines, as it was shown in an elementary
way by A. BoHR (%).

It results from (33) that:

+00

(137) lim B = £l fexp [zw (ﬂ;—tﬂ dw = 20 d(x —ect) .
TTCP ¢ | 0

T>e

— 0
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This formula shows clearly that the collision time 7, vanishes in the limit
of » = ¢; the frequency range that gives important contributions to the field
is now infinite. In the case of the Fermi field

oo
(138) lim EF = z—l—bf e Yw)k(w) K, (ok.(w)) exp |iw (E—-t)] dw,
v—>¢ e c
— 00

and the transverse component of the electric field is not delta-like in the limit
of » =¢. This could also be seen by taking into account that the range of
frequencies giving important contributions to the field does not tend to oo,
as a consequence of (136).

In the case of EY, (133) is replaced by (28). It results from (22) that:

(139) B(w)=~1, (> w;).

The contribution of the very high frequencies is not larger than in the case
of the Fermi field. -

Summary of the formulas.

11. — We shall now summarize the main formulas. We shall not take into
account the corrections corresponding to the case in which the ionizing
particle is an electron, as we did already in section 7 (*). The total rate of
loss per em — dW/dz is

dw dw aw

; Ll <z YWsp
(££0) do dz de ’

—dW_p/dz and —dW_,/dx being the contributions of distances smaller than R
and larger than R, respectively, with

: mass of the electron
dqrne? ’ (n: number of electrons per cm3).

The loss at distances less than R is the sum of two terms:

J dwr
(142) ) i o aw_, S du7<m_ W, ,

dz dz dx

(R, = 10-8 cm).

(*) Our formulas are nevertheless applicable to fast electrons when high energy
transfers may be disregarded (see MOLLER (¢)).
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— dW_, /dz is given by a modified form of the Bethe formula:

AdW_,  2znziet 2mv* Bax =
([dEady=s— d;R = mv'*’l log H1—pY P jzf:'ko(w:’)U(wnRx) ,
2,62
— 1
(143a) o Zdl,

(v = velocity of the ionizing particle) (¢ = charge of the ionizing particle).
The w and f arve the oscillator frequencies (circular) and percentuals, respe-

ctively. I, is the mean ionization potential of the atoms of the ionized medium.
The function U is:

2
(144) Ulw, o) = o* | 6*{E3(eho(e)) — Ki(oko(w))}+ —

By 0ko() Ei(oFo)) | -
(i) ol Ky (hio(@)

The K are modified Hankel functions and
(144a) Teo(w) = % Vi—ge.

— AW}, /dz is the contribution of the distances between R, and R:

awy, _gmustet s —
a5)  — 0 =TS () Vo, R — Uiy, B)) + 2a [ Qerede.

The last term in the right hand side of (145) is the correction to the loss at
distances less than R due to the polarization at’ distances larger than R:

(146) : Qo) = (o) + 2:(0) ,
2ie? R 5 = -
(147) 2n/91(g)g do =~— o'k 1—p? zco,[Ko(Rko(w,-))Io(Rko(w,-)) +

+ Ky(REy(@,)) I, (Rhey(@;)) — 2(B2Rko(@,)) K o( Rleo(@;

SII

+ { Bho@,) 1o Bho(@,)) } L (Bo(@,))]

&(w) is the dielectric constant of the medium for waves of circular frequency w

0

2mne

(147a) w;=~w;, (®;=pole of e(w)), Reselw)=—
= maw;

@;

fi-
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The I are modified Bessel functions

(1470) lim Q,(p) =

v—=>C
The correction due to Q, is less important than that due to Q,.

R

(148) 275] Bifo)o doves — 8mnzet z / (_ &(@;) ) (1 — fre(@,) ) ,

mo? 1—¢(m;)) \2 — pe(@;

X [ B2 {I3( REo(35)) — T3(Rko(@,))} -+ 2(Bho(@,))Lo( Bho(@ ) I, (Rho(@,))] X

- X [Lo(Bleo(@ 5)) I, (Rko()) ]2
(w;-pole of B(w) close to w;).

(148a)  [B()]™* = R|K,(Rk(w)I,(Bkyw)k(o) +

k(o) : ’
T i) N (R’vo(w))] :

— dW_,/dz corresponds to direct ionization and excitation. The loss due to
the emission of Cerenkov radiation is included in — dW.

>13/
y dW>R_ AWeer 22,2 . ~ C;jR ~t_ (dD
G e ﬂ—e] ol ety
dWcﬂ. e zloz 1 R
(149a) —_—— = /] ( T B )wdw,
1 ﬁe<o
m>0
(149) D(w) = [ Ky(Rk(w))Rl(w)B(w)]*
dD\—1 dgrnef; 1— f2e(@;) : e(@;) =
(149c¢) (dw>(w_w,) &Ly (Rho(@;)) 2 — B2e(@;) (1 — e(@y))?
: AW.,\  2mnziet
e Pt (— dz )'_ me:

All the preceding formulas correspond to the case of a real dielectric cons-
tant and are not valid when there are conduction electrons. The case of a
medium with conduction electrons presents special difficulties. Nevertheless
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some of the formulas derived in the preceding sections are still valid in this
case. For instance, we get from (46) an expression of — dW_,/dz which is
general:

25202
51) — Wor _ zl”fgefw(w)l (
0

dz Jry = ) k() K, (RE*()) I o( Rk(w))iow do.

The expression (95) of Q(p) is also general and allows us to get a general

formula for / Q(p)odp:

(152) 2x f Qoodo= T T 01— pr |7 | ) Ol 2 BBkt R +
: 2RI ) L Bk ) ) Jo? oo

5 ] (@)(C(®) + O(— ) { Ko(Rko(e)L( Blise)) + Kol Bli(e) L, Rhy(e)) —

— 2Rk o R0 (Rhfo) o o

@520 0l0) = [ ) Blo) (k) — BB { L Bhw)

Discussion of some experimental results.

12. — We shall examine only some of the existing experimental results in
this paper, a more systematic discussion will be published later. We shall
not consider here the experimental results regarding only the effects of the
polarization on the stopping power, since our main interest is in the
relative contributions of ionization-excitation and Cerenkov radiation to the
stopping power.

The most important experimental results, from the point of view we are
assuming, are those of GosH, JoNEs and WILsoN (1) for mesons in oxygen.
In this case the increase of the ionization after the minimum is considerable,
and the difficulty of explaining it with the theory on Fermi’s lines is obvious.
Indeed, all the relativistic increase in that theory is due to the emission of
Cerenkov radiation and the absorption of the radiation within about 2 mm
is required to explain the experimental value of the increase. The present
theory leads to an increase of ionization of about 309, by neglecting the
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ionization due to the absorption of Cerenkov radiation. (The loss at distances
larger than E is almost entirely due to Cerenkov radiation, as shown by the
discussion of section 5). This value agrees satisfactorily with the experimental
one. It is important to remark that the theoretical value of the total increase
is obtained by comparing the loss at the minimum with the loss at saturation,
and is not affected by the uncertainty on the values of the oscillator fre-
quencies w; and oscillator percentuals f;, since in the region of the minimum

of ionization the rate of loss

g in a gas depends only on the
i P = mean ionization potential
=y IS and the value at saturation

8 Oxygen T//

*I's / does not depend on the w;,
ul g y and f;. The mean ioni-
. /% 7 e zation potential was taken
S , of Ghosh etal | | | as 89.2 eV for oxygen, i.e.
5 \ i/ I the experimental value ob-
2 \\ 4 tained by LIvINGSTON and
Tl i | | #e  BETHE (%) for air multi-

A : L R L R R e Ly plied by 8/7.22.
Fig. 3. — Total rate of ionization (transfers less The variation of the rate
than 1000 eV). . of ionization for oxygen at

normal conditions is shown
in fig. 3, which corresponds to the values of the »;, and f;, given in table I.
There is some uncertainty in these values, but the effect on the rate of loss
is not considerable. The agreement with the experimental data is satisfact-
ory, by taking as 34.5 eV the average energy necessary to create an ion pair.
The transfers in close collisions were cut at 1000 eV.

In the case of silver and bromine, the results were found not to be very
sensitive to the choice of the w; and f;. The two sets of values A and B
of table I led to results differing always by less than 0.59%,. The mean ioni-
zation potentials of Ag and Br were taken as 470 eV and 367.5 eV respectively,
by interpolating the data of MATHER and SEGRE (1°) and taking into account
those of BAKKER and SEGRE (2°). The energy transfers in close collisions were cut
at 5000 eV (see JANsSENS and HUYBRECHTS (31)). The results are insensitive
to the choice of this cut-off value. By neglecting the absorption of Cerenkov
radiation, the increase in ionization from the minimum to the plateau in AgBr

(18) M. S. LivingsTtoN and H. BETHE: Rev. Mod. Phys., 9, 246 (1937).
(**) R. Maruer and E. SEGRE: Phys. Rev., 84, 191 (1951).
(20) C. J. BArkeEr and E. SEGRE: Phys. Rev., 81, 489 (1951).
1

21) P. JaxNsseENs and M. HuyBRECHTS: Bull. Cent. Phys. Nucl. Bruz., n. 27 (1951).

19
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crystals was found to be 3.89%,. The total rate of loss, including Cerenkov
radiation, with transfers in close collisions cut at 5000 eV is of 5.96 MeV/em
at saturation, the corresponding value in the theory on Fermi’s lines being
6.42 MeV/em. The value 3.8%, seems too low to explain the observed increase
of grain density of about 79,. Moreover the saturation of the grain density
occurs faster than that of the total rate of ionization. The discrepancy bet-
ween the theoretical results and experimental data can be considerably atte-

| Silver Bromide

O\ 4
095 . ~—— = tLExperimentaI values _|
I N T 1 of Morrish
9 1 | ! ! | ! | | 1 1 ! Pr—
050 2 4 6 8 10 2 4 6 & 107

Fig. 4. — Total rate of ionization (transfers less than 5000 eV). Curve I: Contribu-

tions of all the shells. Curve II: Contribution of the outer shell (j = 1) neglected.

Curve III: Contributions of the outer shell and one third of that of the second shell
(j = 2) neglected.

nuated by taking into account that small energy transfers are probably not
sufficient to develop a grain of AgBr. By neglecting the contribution of the
electrons of the outer shell, the increase from minimum to saturation- be-
comes 4.89%, and an increase of 69, is obtained by neglecting entirely the
contribution of the outer shell and 339, of the contribution of the next
shell; this procedure leads also to a faster saturation. The theoretical results
and the experimental values of MORRISH (22) are compared in fig. 4 (¥). The
agreement seems satisfactory, when the small energy transfers are neglec-
ted, although the saturation of the "grain density is still faster than
that of the reduced theoretical loss. The eventual existence of an instru-
mental cut-off of the very small transfers in the photographic emulsion can

(22) A. H. Morrisu: Phil. Mag., 43, 533 (1952).
(*) The normalizations of the three curves in fig. 4 are of course different, in order
to get the same saturation plateau.
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TasrLe I
; “ Silver Bromide Oxygen
i S B s ‘
; ; Shells 82 f; 4 d B Shells 8 f; v,
1 [ N Br 8.4 1.025 1.502 L 2p 4.2 54.31
o2 N Ag 20.4 3.33 3.33 L 2s 2.0 108.62
i 3 M Br 18.0 7.18 6.00 K 1.8 727.10
4 M Ag 18.0 10.62 10.62
5 L Br 7.2 33.50 33.50
076 L Ag 7.2 72.45 72.45
" 7 K Br i 1.4 277.80 277.80
8 K Ag | 14 | 526.60 526.60
' !
a 11.76 -1015 -1 0.1861-1015 g—1
R 4.065-10-7 em 2.562 1075 cm
I, Ag 470 eV Br 367.5 eV 89.2 eV
Wj
V= —.
¢ 270

be put in evidence by accurate measurements in the region before the
minimum of ionization, where the polarization effects are very small. Such
an effect would make the effective mean ionization potential for the develop-
ing of grains in the photographic emulsion higher than the true mean ioni-
zation potential. The effective mean ionization potential for the developing
of grains may eventually depend on the average size of the grains and other
conditions affecting their sensitivity, as well as on the processing of the plate.

Unpublished results of Vovvobic (*) for w-mesons and electrons in the
photographic plate show also an increase of about 6-79; and the agreement
with the present theory seems quite satisfactory by assuming the existence
of the instrumental effect discussed in connection with the MorrIsH data.
The results of L. JAUNEAU and F. HuG-BOUSSER (23) ‘show the existence of
an increase of the grain density after the minimum in the photographic emul-
sion, but the scatter of the results in different series of measurements appears
to be considerable and a precise evaluation of the increase after the minimum
is difficult.

The results for the photographic emulsion can probably be improved by

(*) Private communication.
(**) L. JauxEAU and F. HuG-BOUSSER: Journ. de Phys. (in press).
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nsing a more accurate expression of the dielectric constant, in which the effect
of a shell is not assimilated to that of a single oscillators (see WICK (2)).

Note added in proof. — Dr. A. H. Morrisu has called our attention to the paper
of Mc Diarmip (Phys. Rev., 84, 851 (1951)), whose results agree rather better with
ours with respect to the beginning of the saturation in photographic emulsions.

ArPENDIX I.

Let us denote by F(w) the quantity within the square brackets in (40):

2¢(w) Ky(RE.(w))

) 2o)= pr®) Ky(Rk (o))

£

It was shown in references (5) and (6) that the w corresponding to real values
or poles of the function e(w) defined by (42) have negative imaginary parts,
when the damping constants are not 0. F(w) has therefore no other singu-
larities in the quadrant of the positive real and positive imaginary axis
besides that at the point w = 0. In order to show that #(w) has no zeros
in this region, we shall consider the closed contour I' formed by an infinite-
simal quarter of circle centred at the origin, the positive real and positive
imaginary axes and a quarter of circle centred at the origin with infinite radius.
F(w) is real and positive on the positive imaginary axis and on the infinite
quarter of circle, and the variation of its argument along the infinitesimal
quarter of circle and the positive real axis is equal to zero. Since the variation
of the argument of F(w) along the closed contour I is equal to zero and F(w)
has no poles, either on the contour or inside it, when the damping constants
in (42) are not 0, it follows from the argument prineiple that it has no zeros
in that region.
F(w) is related to the function D(w) defined by (52):

2e(w) K (R

e

) D),

2) F®) = Ft.(0) Ea(Bhlw))
" ch Ku er
(3) D) = lin Dlo) = 2 g ERI» EZB =

We have shown that D(w) has zeros in the neighbourhoods of the w;, whose
imaginary parts are negative when the damping constants are finite. It results
from (2) and (3) that, in this case, F(w) has also zeros in the neighbourhoods
of the w;, with negative imaginary parts.

We shall now prove that, in the case of a real ¢(w), the function D(w) has



[802] M. HUYBRECHTS and M. SCHONBERG - 39

no zeros in the Cerenkov bands. It follows from (52) that, at a zero @ of D(w):

(4) ILQRL P _Io(Rko(ch)) ko(@)

If & would lie in a Cerenkov band, we would have:

(3) argllﬂA“ﬂkﬁ~ﬂ} ru.gl ;Ho'(R I(G)!)] a

K,(—iR|k@)|) HP(Rk(@)|)

ol

It follows from (5) that:

_[TARIK@)]) + iN(R|k@)])|
) e [JI(R!M) e iNl(le(a‘Dl)J w2

Since J () and J,(u) do not vanish simultaneously for any real value of
and the same happens with Ny(u) and N,(u), equation (6) will only be satisfied
when k(w) = 0. It is therefore not compatible with (4).

AprPrENDIX II.

It results from (22) that:

%
et ) B(—o)Ky(Rk(— w)) =

(1) (——~—ﬂ) (@) o Rk(e)) — (

1
e(—w)

= B(w)B(—w) [B—l(— ) (L — 2) Ky(Rk(w)) —B~Y(w) (

e(w) — ﬂz) K(Rk(— w)] 4

= RI,(Rky(w))B(e)B(— o) [(ﬁ = /32) Eo(R()) K (Rb(— w)k(— w) —

1

_(___ 2)1(0 Rh(— ©)) K, (Rk())k(o )},
&(— w)

hence

@ @ [(i < /32) B(w)Ko(RMw))iw] -
&(w)
— RI(Bhyw))| B)|* R [(;:5) Ny ,32) K Rb(00) (R ) )i

* This equation shows that (39) is equivalent to (46) for ¢ = R,
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~ In the Cerenkov bands arg k(w) = — m/2, therefore:

(3) k(— o) = exp [in]k(w) , (>0, 1-— f2(w)<<0).

By taking into account the well known formulas

(4) Ky(exp [im]u) = Ko(u) — imly(u) , ' K, (exp [im]u) = — K (u) — izl (u) ,

and (21), we can simplify (2) in the Cerenkov bands:

(5) 93[(——/3)12(60 (Rk(w))iw]:

4 1
:—gw(m— ) (Bhy()) | B@)]?, (>0, 1— Bre(ew) < 0).

It results from (5) that the first term in the right hand side of (62) is equal to
the right hand side of (59).
When the damping constants are finite, we can obtain regular analytic

functions in a strip around the real positive w-axis starting from the functions
k(w) and B(w) defined on that axis by (16) and (22), with

(6) kol —\/1—/’2

k(— w) and B(— w), as defined by (16) and (22), are not obtained by analy-
tical continuation of the regular analytic functions k(w) and B(w). We shall
introduce the analytic functions k(w) and B(w) defined by the equations:

(7) ‘ k(w) = k*(w),  B(w) = B¥w), (@ > 0).

It results from the well known symmetry principle of Riemann and Schwarz (*)
that, with a suitable choice of the branches:

®) ko) = (Ho*)*,  Bo) = (Bo*)*

By introducing the function G(w)
1 = - .
9) G(w)=w(m— 2)‘B( VK o(RE(e))[1 — RIy(Rlo(o0)) B(oo) Ky (BI(0)) b(w)] 5

equation (1) can be written as:

(10) _ ImGw) =0 for w>0.

(*) See, for instance, Z. NuuARI: Conformal Mapping (New York, 1952) p. 184.
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Hence we have

(11) Hw*) = (FHw)*,

as a consequence of the symmetry principle. It results from (11) that:

(12) Res G(w) = ~{30s~G(w)}*.

U)]+{77 wj—in;

This equation can be obtained by comparing the values of / G(w)dw and
. r

[ G(w)dw, I' being a circle with sufficiently small radius centred at the point

Pa

@, + 47, and I'* the circle with the same radius centred at @;—i7;, both

circles being deseribed in the same sense. By introducing the expression (9)

of ¢ into (12), we get:

1
)

(13)  Res K

w;+i1]]

- /32) B(a))B(cu)Io(Rko(w))Ku(Rk(a)))Kl(R?c(w))R%(w)w] -+

e {~,IRe§ [(3 o ,32) B(w)E(w)Io(Rko(w))Ko(Rk(w))1(1(RE<w))RE(w)w] } —

. &
wj—in;

~ Res [(T— ) ) Ko Rk(e))e }

wj—1n;

~

In the limit of zero damping constants, equation (13) becomes:

(14) Res [(T L ) B(w)I,(Rk(w ))KO(Rk(w))Kl((w))Rk(w)w} =
@j

= (8 —B ) K,(RE(w;))w; Res B(w) .

@j
It is easily seen that for any analytic symmetric. function H(k(w), Ic_(w); )
(15) H(k(w), k(w); ) = H(k(w), ko); o),

regular in neighbourhood of the poles @, -+ i7; of G(w) and taking real values
for positive w, we have:

(16) ~1'%es~ H(k(w), k(w); ®)B(w)K,(RE(w)) (—1— _ﬁ2)w]=

: &(w)
wj ~1n;j

= Res L(w) + Res L(o) ,

@j4inj wj—in;j
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with:

(17)  L{w) = H(kw); kwo); “’)(%w) o 2)><

X B(w)B(w)Io(Rlo(w)) Ko(Rk(w)) Ky ( Rk(w)) Rle(w)w .

In the limit of zero damping constants, we get:

18)  H(k@)), k@) w,->Ko(Rk(c~u»)( .

= 52) @, Res B(w) =
(®;)

= Res |H(k(w), k(w); w)(—l— —

v ) 2) B(w)Io(Rko(w)) Ko RE(w)) Ky (RE(w)) RE(w)w | -
(7}

This equation shows how it is possible to transform the expression of the loss
at distances larger than R by direct ionization-excitation obtained from the
equation (58) of section 4 into that given by (62) of section 5, which involves
only the residue of [D(w)].

ArpPENDIX III.

We shall now prove formula (109) of section 8. In order to get an appro-
ximate value of dD/dw at the zero @;, we shall start from the formula (52)
of section 4 and we shall neglect the variation of the functions I, as well as the
variation of the ratio of the two K functions. We may write:

E,(Rk(w)) VI — B*()
K (Bk(w)) /1T — Bre(w)

With. the aforementioned approximations we get:

1) D(w) = I,(Rky(w)) + I,(Rky(w)) .

D Ey(BK@) L(Rk/(@) d

(2) do =~ K (Bk@,) vi—p do

[eY(w)V1 — pre(w)] .

Since

8 oW — T — _ VI—felw) 2—Belw) . ds
(3) o [e o)V — fre(w)] = G 1P o) 3

and

G Vi) - VI G L)




[806] M. HUYBRECHTS and M. SCHONBERG 43

we have:

4 {a“l [ @V1 — ()] } =

70((1:1‘)) 2 —/328(54) “®,) <(E>(w ok

dew
It results from (2) and (5) that:

(6) (dD"

! 2 pre(d) s
(160)@:6)_):510(13 o(@ ))1—ﬁ2 (@; (do)><w=w>8 (I,

It results from formula (50) of section 4, combined with formula (119) of
section 9, that in the neighbourhood of @; we have:

2,,2f.
(@) el w) =1 + L:l“lL y
w?— 02

We get from (

-
~

R d. w(e(w) —1)2
(8) € (co)@:— ( )5(;6 <”)%A2n2a2f,-8(w) )
hence
2 (g)) L danef,  1—pe@)  e(d)
(9) dw (a,=;,,,= ma;Lo(Rky(0;)) 2 — fPe(@;) (e(@;) — 1)

This is formula (109) of section 8.

It is interesting to remark that formula (66) of section 5 can be obtained
immediately from (9). This is important because (66), for extremely rela-
tivistic energies, gives a good approximation when w; differs little from @;,
whereas (7) is only smtls‘factmy when dlﬂfels little from w;. Formula (9)
gives therefore a good a,pplommzmon when @; is close to either o, or w;, i.e. for
an entire interval which contains @;, at least for extremely relativistic energies.

RIASSUNTO (%)

Si formula una teoria della perdita d’energia di una particella carica, in cui il mec-
canismo della perdita & differente da quello della teoria di Fermi. La nostra teoria
conduce a una distribuzione della perdita tra l’eccitazione per ionizzazione e l’emis-

(*) Traduzione a cura della Redazione.
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sione di radiazione Cerenkov che differisce notevolmente da quelle delle teorie del tipo
di quella di Fermi, per quanto il potere di frenamento non sia essenzialmente diverso,
essendo soltanto nella nostra teoria alquanto minore che in quelle. Questo trattamento
conduce a un aumento della ionizzazione diretta per parametri d'urto maggiori delle di-
mensioni atomiche dopo il minimo relativistico, I'aumento essendo considerevole nel
caso dei gas. L’effetto di saturazione di Fermi della perdita a distanze superiori alle
dimensioni atomiche esiste anche nella nostra teoria, per quanto in virtu di un diffe-
rente meccanismo. I aumento relativistico della perdita nelle interazioni a distanza &
dovuto largamente a un aumento dei raggi d’azione per la ionizzazione e I'eccitazione
(meccanismo di Bohr-Williams), ma & dovuto anche a un contributo della radiazione
di Cerenkov (meccanismo di Fermi). La saturazione ¢ dovuta a una limitazione del-
laumento dei raggi d’azione dovuta alla polarizzazione del mezzo e alla saturazione
dell’emissione di radiazione Cerenkov. La presente teoria conduce a una modificazione
della formula di Frank e Tamm per il tasso d’emissione della radiazione Cerenkov,
Pemissione di radiazione Cerenkov di elevata energia essendo considerevolmente ridotta.



