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The divergences of the meson theory are avoided by using a method introduced by the author
in quantum electrodynamics; the method is worked out for the case of pseudoscalar charged
mesons. The quasi-static forces between the nucleons are treated as relativistic actions at a
distance; two independent complex pseudoscalars are used in the description of the meson
field. It is shown that it is possible to choose separately the type of nuclear forces and the inter-
action with the meson field, because of the action at a distance treatment. The formalism,
associated to special rules of interpretation, leads to finite transition probabilities; it can also
be applied to self-energy problems and leads to finite self-energies and magnetic moments. In the
computation of the self-energies and magnetic moments two constants appear, which may be
chosen in such a way as to give different masses to the proton and neutron.

I. INTRODUCTION

N this paper we shall extend to the meson
theory the methods applied by us to the

quantum theory of the electromagnetic field.!?
Our treatment of the electromagnetic field is
based on a combination of the ideas of actions at
the distance of Tetrode® and Fokker* with the
field concepts of Faraday and Maxwell® (in
quantum theory these concepts correspond to
the quantum theory of fields of Heisenberg and
Pauli®). The separation of the actions at a
distance from the radiative actions (actions
through the field) is closely related to the sepa-
ration of the static forces from the radiative
actions, which is usually done by means of a
contact transformation (in the meson theory
such a treatment was systematically developed
by Moller and Rosenfeld”). The actions at a
distance are a relativistic generalization of the
static forces; they are half-advanced, half-
retarded forces, not instantaneous ones. The
actions at a distance include the static actions
plus a part of the forces which are usually derived
from the interaction between the particles and
the radiation field (interaction with the trans-

1 M. Schénberg, ‘“‘Quantum theory of the point electron.
1.” Phys. Rev. 74, 738 (1948).

? M. Schénberg, “Quantum theory of the electromag-
netic field. I."”” Anais Acad. Brasil. Cienc. (in print).

3 H. Tetrode, Zeits. f. Physik 10, 317 (1922).

4 A. D. Fokker, Zeits. f. Physik 58, 386 (1929).

® M. Schénberg, ‘“Classical theory of the point electron,”
Phys. Rev. 69, 211 (1946).

®W. Heisenberg und W. Pauli, Zeits. f. Physik 56, 1
(1229), and 59, 168 (1930).

. Méller and L. Rosenfeld, Kgl. Danske Vid. Sels.
Math.-Fys. Medd 17, 8 (1940).

verse waves, in the electromagnetic case). In
order to separate the actions at a distance from
the true radiation field, which is classically one-
half the difference between the retarded and
advanced fields, it is necessary to modify the
method of quantization of the fields by using
two sets of field quantities, which correspond to
the quantities of the classical retarded and ad-
vanced fields. The commutation rules for the
quantities of the two independent fields, which
correspond to the classical retarded and ad-
vanced fields, are not the same, because of the
structure of the classical Lagrangian, but they
are not very different. On the other hand, the
commutation rules for the quantities of the true
radiation field are essentially different from those
of the usual forms of the field theories. Since the
particles interact only with the true radiation
field, because the actions at a distance are intro-
duced separately, the description of the interac-
tion between the particles and the fields, given
by our formalism, is essentially different from the
usual one and allows us to avoid the divergences.

In order to describe the actions at a distance
we define particle operators for the half-retarded,
half-advanced quantities analogous to the half-
retarded, half-advanced classical potentials. The
method of defining those operators, in the
quantum formalism, is similar to that used in the
classical theory; it is analogous to the method
used by Moller and Rosenfeld in their definition
of the static potentials. Instead of the Green
function of the static Yukawa equation, used by
Moéller and Rosenfeld, we use the Green function
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of the Klein-Gordon equation which corresponds
to half-advanced, half-retarded solutions. The
essential difference between our treatment and
the Moller and Rosenfeld one lies in the fact that
they can obtain the static forces by means of
a contact transformation applied to the Hamil-
tonian of the system nucleons plus meson field,
whereas we do not get the actions at a distance
from the interaction between the nucleons and
the meson field, but do introduce them directly
and independently. Our treatment allows us to
associate actions at a distance corresponding to
the symmetrical Méller-Rosenfeld mixture to an
arbitrary type of meson field. In this part of the
paper we consider only a field of pseudoscalar
charged mesons, for the sake of simplicity, but we
could associate the same actions at a distance with
a charged vector meson field or to a field of charged
mesons with spin 1. The interaction constants
which appear in the actions at a distance can
be taken independently. Our particle operators
for the potentials allow us to get the static
forces, by neglecting all the relativistic correc-
tions; they lead to relativistic interactions of the
type considered by Leite Lopes® and Tamm,® by
taking into account the retardation effects in
a first approximation.

The treatment of the nuclear forces as actions
at a distance offers new possibilities. From the
point of view of the actions at a distance it is not
necessary to use the Green functions of the
Klein-Gordon equation in the derivation of the
nuclear forces. We may replace those Green
functions by other relativistic functions in such
a way as to modify the form of the nuclear forces
for small distances and thus avoid the difficulties
arising from the high singularity of the dipole
interactions as well as from those involved in the
non-static part of the interaction. Thus we get
a relativistic ‘“radius” for the nucleons which
does not come in the interactions between the
nucleons and the meson or electromagnetic
fields but does introduce a relativistic cut-off of
the forces at small distances.

The special nature of the commutation rules of
the radiation meson field allows us to get exact
solutions of the Schrédinger equation of the

(];4]5.) Leite Lopes, Anais Acad. Brasil. Ciencias 17, 273
0 Ig..Tamm, J. Physics, 9, 449 (1945).

MESON THEORY

system nucleons plus meson field, in which the
nucleons interact only with the degrees of
freedom corresponding to some arbitrarily chosen
momenta of the mesons. We call those solutions
“frozen’’ solutions and the degrees of freedom of
the meson field, which do not interact with the
nucleons in those ‘‘frozen’ solutions, the ‘‘frozen”
degrees of freedom. By using “frozen’ solutions
it becomes possible to get rid of the divergences
both in the computation of the transition proba-
bilities and the self-energies. The possibility of
the “freezing” results from the fact that, in our
formalism, the field has twice as many degrees
of freedom as in the usual treatment, because we
introduce two sets of field quantities. Our
method of quantization has some points in
common with Dirac’s method,!* but the two
methods differ fundamentally because in Dirac’s
treatment the particles interact with a field which
does not have the same commutation rules as our
radiation field, so that it is not possible to
“freeze’” the irrelevant degrees of freedom of the
field. The duplication of the degrees of freedom
of the meson field leads to the existence of mesons
with positive and negative energies. It is im-
portant to notice that the negative energy mesons
which appear in our quantum formalism cor-
respond to the waves with negative energy of
the underlying c-number theory. The existence
of the negative energy mesons is not due to a
special method of quantization, but it follows
from the fact that the c-number energy of the
radiation field is not necessarily positive as the
total energy of the field-including the potential
energy of the actions at a distance—in the usual
c-number field theories.

The existence of negative energy mesons and
the necessity of using ‘‘frozen’ solutions, in
order to avoid divergences, require a physical
interpretation rule and a ‘‘freezing” criterion.

 The physical interpretation rule can be chosen

in many different ways—as it happens in Dirac’s
formalism with an indefinite metric in Hilbert
space (see W. Pauli’?). In the electromagnetic
case it is possible to justify the choice of the
simplest interpretation rule by correspondence
considerations, presumably the same thing can

0 P, A. M. Dirac, Proc. Roy. Soc. A180, 1 (1942).

up, A. M. Dirac, Com. Dublin Inst. Adv. Stud. A,
No. 3 (1946).

12 W. Pauli, Rev. Mod. Phys, 15, 175 (1943).
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also be done in meson theory, so that our choice
of a definite interpretation rule seems justified. In
the computation of transition probabilities there
is a very natural ‘‘freezing’’ criterion; the degrees
of freedom which must be kept ‘“unfrozen’ are
indicated by the mesons which appear before
and after the transition. Thus the application of
our formalism to the computation of transition
probabilities is quite straightforward and does
not lead to any real arbitrariness, because the
“freezing’’ criterion is natural and the physical
interpretation rule has a classical analog.

The application of our formalism to self-energy
problems is less satisfactory than in the case of
the transition probabilities, because we lack a
natural ‘“freezing” criterion. Presumably a
further development of the theory will improve
the situation. We applied the formalism to the
computation of the self-energies and magnetic
moments of the nucleons, by assuming that the
degrees of freedom of the field corresponding to
momenta of the mesons above certain limits, in
the rest system of the nucleon, are ‘“frozen.” The
“freezing’’ in the case of the meson field presents
a difference, with respect to the electromagnetic
case, arising from the existence of positive and
negative mesons: It is possible to introduce two
radiation meson fields, one giving rise to the
emission and absorption of positive mesons with
positive energy and negative mesons with nega-
tive energy, another giving rise to the emission
and absorption of negative mesons with positive
energy and positive mesons with negative
energy. The two radiation meson fields can be
“frozen’ separately in the computation of the
self-energies and magnetic moments, with the
introduction of two different upper limits for the
“unfrozen” meson momenta. If the two limits
are equal, the self-energies of the proton and the
neutron will become equal, and the contributions
of the meson field to the magnetic moments will
be opposite. By taking two different limits, the
self-energy of the neutron can be made larger
than the self-energy of the proton, in agreement
with the experimental evidence.

II. QUANTIZATION OF THE MESON FIELD

We shall consider a system of # point nucleons
interacting with a field of pseudoscalar charged
mesons, described by two independent pseudo-

scalars, ¢ and ¢. The equations of motion
of the field will be derived from the action
principle

6de4x=O, (1)

2

1 /9pD* gp
( i K2¢(+)*¢(+))

oxt  9x,

2

(=)* =)
l(ad) 6¢ _K2¢(_)*¢(_))

ax*  0xy

+320 2 Ty0(x—x,)[T4(¢ —¢)
i=1
i n
+n*(¢(+)*—'¢(—)*)]+5fo Zl Ty 8(x—X;)
I 9
A )
dxH axH

JpH*  gp*
+Tp (- )] @

dxH dx*

K is related to the mass of the meson m.
K =mc/h. 3)

go and fo are interaction constants. The index j
denotes the nucleons. The tensor index u takes
the values 0, 1, 2, 3. The operators v,* and T'; are

'YJO=B]'1 ’Yjazﬂjalav (a'=1v 2! 3)' (4)
Ty=vv74 = — B a5’a, (5)

The « and B are the well-known operators of the
Dirac wave equation. The operators 7" and T*
transform neutrons into protons and protons
into neutrons, respectively. We are taking as
metrical tensor the tensor g,, whose components
are

goo=1, gu=ge=gs=—1, g.=0, (#v). (6)

¢ and ¢ satisfy the same wave equation

i=1

0?2 n
(ot )s=a £ 11 i)
dxrOx,

n 0
—ifo Y, —[TyysTi*o(x—x)]. (7)

i=19x*
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The conjugated momenta of the ¢ are the II

1 9
I (x) = £ — —pD*(x)

¢ 9%
7
iz—cfo 2 0B Ti6(x—x;). (8)

The only non-vanishing commutators between
the ¢ and their derivatives are the following ones

[¢(+) (X, xo), i¢,(+)*(x” xo)]

%o
' d
=[¢(+)*(X, xo)i _¢(+) (xlx xO):I
9%

=2thcé(x—x'). (9)

d
[¢(—) (x; xO)r —d’(—)*(x,; xﬂ)]
axo

[oorn s, Lo ]

Xo
= —2ihcd(x—x'). (10)

The commutation rules between quantities
taken at different times can be derived in the
usual way

[P (%), ¢P*(x')]= —26hcD(x, x), (11)
(69 (%), ¢O*(x") ] =2iheD(x, &'). (12)

D(x, x') .is the symbolic function defined by the
following equations: i

( i +K2)D(x, x') =0, (13)

0x*9x,
D(xf x') (xo=x0') =0,
a
[———D(x, x’)] =§(x—x'). (14)
9% (x0 =x0")
Let us put
braa =3[ — )], (15)

The radiation field ¢4 satisfies the homogeneous
Klein-Gordon equation

82
( +K2)¢ud=0- (16)

OxPIxK,

The commutation rules of the radiation field and
its complex conjugated are

[d)md(x)y ¢rad(x,):’ = [¢rnd*(x)y ¢rud*(x,)j = 0 (17)

and

[¢raa(x), $raa®(x") ]=0. (18)

We shall enclose the field in a cubic box of
volume V and impose periodic boundary condi-
tions. It results from (16) that we may expand
¢raa 10 free waves

Graa (%) = (ic/ V)Y 325 ko { A raa? () exp(—ikex,)
+ A0 (k) exp(ikrx,)}. (19)
ko= (|k|*+K?)}. (20)

We shall now introduce the two partial radiation
fields ¢raa” and ¢rag™

d’rudp' = (hC/ V)& Zk kO_iA mdp' n(k)

Xexp(—zkrx,). (21)
We have

[(9%/9x#9x,) +K*]praa™ " =0, (22)
an

[(.brndp' n(x), ¢mdp. n(x’)]

= [¢rndp' "(x), hraa” M(x’) :] =0. (23)
The energy of the meson waves is H,.
Hm=%f(46211(+)*1](+)

3¢(+)* dp

L K2¢‘+)*¢‘+))dax

0x% 90X,

ey %f (4c2H("*H‘“)

Ap* 9

+K2¢('>*¢(—))d3x. (24)
9x% 0%,

The interaction energy between the nucleons and
the mesons is H’.

H'=—go 2 4[Ti{ T praa(s) + Ti*braa™ () }

d
——tfo Zjl: I‘,’y,f‘{ Tj—d’md(xj)
9x4

d
+ T ——tbraa* (%) ] ] (25)
x4
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In our formalism the contact forces between
nucleons arising from the two fields ¢ cancel
each other, and there is no ambiguity as in the
one field theories (see Kemmer'®). The total
momentum of the meson field is G,

Gn=— f [gradep™*- IH* 4TI grade™ Jdax

Iy f [grad¢@*IO*
+ 119 grade© Jdzx.  (26)

The four vector of charge and current density of
the meson field is Sp*.

7e a¢(+) a¢(+)*
St =—o( pH* — ¢

2he 9%, 0%y
ie O dp*
.__(¢(—)* _¢(—) )
2he d9x, 0%y
e
e

fo 225 Tyv#6(x—x,)
hic

X [Tj¢rad (x) N Tj*d’md*(x) ] (27)

III. THE WENTZEL MESON FIELDS

In quantum theory it is necessary to introduce
different time variables for the particles and the
field, as it was shown in the case of the electro-
magnetic field by Dirac, Fock, and Podolsky.!*
We shall introduce only two time variables, x,°
and xy° the time variables of the meson field
and the nucleons, respectively. The field quan-
tities ¢w & which depend on the two time vari-
ables are the Wentzel meson fields; the ¢w @ go
over into the ¢ by putting x.’=xy° For the
sake of simplicity we shall denote the time
variable of the meson field by x, and the time of
the whole system nucleons plus meson field by ¢.
Let us put

H,=3Y; Hj+H'+ Hin, (28)
Hj=c(e;: ps) +Bmsc?, (29)
my=3My(1+77)+ Mp(1 =771 (30)

13 N. Kemmer, Proc. Roy. Soc. A166, 127 (1938).
4P, A. M, Dirac, V. Fock, and B. Podolski, Physik.
Zeits. Sowjetunion 2, 468 (1932),
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p; is the momentum of the jth particle, and ;3
the third component of its isotopic spin. We
assume that the isotopic spin component 7® has
the value 1 in the neutron state and —1 in the
proton state. Hiq, is the potential energy of the
actions at a distance between the nucleons; it
commutes with the meson field quantities. My
and Mp are the rest masses of the neutron and
the proton, respectively. We have the equations
of motion of the Wentzel fields ¢w & :

ad,w(:!:)
ihc = I:(t)W(d:), Hm(xO)jt (31)
dx°
3¢W(:£:)
ihc =[ow®, Hy(xn°)]
axNo
=[ow™®, H'(xx°)]
. . a
= zhcl B PjTJ*[gO = 7'f077“_:|
7 oxH
XD(x, x4) } (82)
(x50 =;\-Nn)
] a¢rud. w
1h6 = [d’rud. Wy I{p(xNo)] — 07 (323)
dxp°
62¢W(:t) ad)w(:!:)
2hc =[ ) Hm]
6;\‘02 E)xo

62
= —ihc( —}-K?)daw(i’. (33)
0Xx%0X4

From now on we shall denote the Wentzel fields
by ¢®&. It results from Eq. (33) that we can
expand the Wentzel fields in terms of free meson
waves. We shall assume that the field is enclosed
in a cubic box of volume V, and impose periodic
conditions in order to get Fourier series

oD = (he/ V) Xy ko~ {4, (k) exp[ —ikex, ]

+A,0%(E) exp[ikec, ]}, (34)
9O = (he/ V) T ko~ 42O (k) exp[ —ikex,]
+4,0*(k) exp[ikex,]}. (35)

It results from (32a) that the radiation field does
not depend on the time of the nucleons so that
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¢rad. w= ¢rnd and
Ared®(k) =3[A, P (k) — 4. (k) ], (36)
Arad(k) =3[ AP (k) — A4, (k) ].

The only non-vanishing commutators are those
of a Fourier coefficient and its conjugate

[4,P(R), 4,k ]

=[4.D (%), AxD*(R)]=0u,  (37)
[4,9(k), 4,9*(E")]

=[4.9(k), AxO*(kK) = — 8- (38)

Let us introduce the operators N which give the
numbers of mesons

Ny o (B) =A 5, fD*(E)A 5 P (B),
N 2O (k) = A 5, n D (B)A 5, n (k).
We have
Hu=he 3 k[N, (k) + N, (k)
— N, (k) —N.O(k)]. (40)

- (39)

oi= f Sodsgo = SuLN, P (k) — N, (k)
FN,OE) - N.O® ] (@1)

QOn is the total charge of the meson field. Equa-
tion (40) shows that the mesons of the field ¢
have positive energies and those of the field ¢
negative energies. Mesons with the same wave
number vector k belonging to different fields have
‘opposite momenta, since

Gn=h 2 K[N,D(k)+N,D (k)
=N, (k)—ND(k)]. (42)

IV. THE ACTIONS AT A DISTANCE BETWEEN THE
NUCLEONS

In the preceding section we did not give the
explicit form of the potential energy of the
actions at a distance Hint. In our theory the
nature of the actions at a distance is not deter-
mined by the choice of the meson field inter-
acting with the nucleons. We shall investigate
the actions at a distance which would result from
theories of the Heisenberg-Pauli type corre-
sponding to pseudoscalar and vector symmetrical
fields (charged and neutral mesons).

In order to get the actions at a distance of the
symmetrical pseudoscalar type let us consider
the following equations

32
( +K02)¢;’=%80T7’/"I‘15(X—X’)
0xH0x,

i 9
——ﬁ)f———[Fj'y,“Tfﬁ(x—xj)] a ($= 1, 2, 3). (43)
2 Ox*

K, is a constant related to the range of the
static forces; go' and f,' are real interaction
constants. The 7;# are the components of the
isotopic spins of the jth nucleon. We shall con-
sider the half-retarded, half-advanced solution
of Egs. (43):

+
8,°(%) = 1go" f Ty 75°(xs)

—0

XG(x, x4(x,°) ; Ko)dx,°

i e
+Efof f Ty (2,2 v 4#(%,°) 74° (%4°)

i)
X—G(x, x4(x,°) ; Ko)dx,0. (44)

Ll

G(x, x"; K,) is the Green function of the Klein-
Gordon equation corresponding to the value
K, of the constant. G is related to the function D
corresponding to the same value of the con-
stant K,.1516

G(x, x'; Ko) =% sign(xo—x0')D(x, x’).(K =Ky). (45)

We shall use the expression of G as a Fourier
integral

G(x, x'; Ko)
1

"~ (2my

wo=(Ko?+ |u|2)t. 47)

+ ! d4u
| ewliwts,—x)1——, @)

wo“— Uy

Let x be any function of the type of the wave

function of the system in consideration. We

16 M. Schonberg, Physica, 5, 553, 961 (1938).
16 ;/)I Schonberg, Rev. Union Matem. Argentina 12, 238
(1947).
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shall take
1< p dat”
G, wss); Kodx=—— [ explinr(e, =46 Ix : (48)
(2m)tJ o wo® — Uo*
ad ) e i Uy datt
—G (%, x4(x,%) ; Ko)x=— f exp[aur(x, — %, ,(%,°)) Ix———— - (49)
dx* (2m)4 _ wo?—Uo?

In a similar way we can define the operators G(x;(x,°), x:(x) ; Ko) and (9/9x:*)G(x;(x,%), x:1(x:°) ; Ko),
which we need in order to compute the operators ¢,°(x;) by means of (44).
The potential energy of the actions at a distance of the symmetrical pseudoscalar type is Hin(?

Hin® (x0) = — 50" 22 2 i[f‘;(xo) 74 (o) 42° (%) ]

i lxie=1

——fo'f 229 L FESSEERS (xo)—qs, @ o
ilxie=
In order to compute the potential energy of the actions at a distance of the symmetrlcal vector
type let us consider the real four vectors ¢;** which are half-retarded, half-advanced solutions of the
equations

92
( +K12)¢;(")“_ 3gfoyro(x—x;) +‘2‘f17 O —[a, v 8(x—Xy) ], (51)

dxk9x, vt 0X”

+o
¢ k(x) =581 f ot (24°) 742 (2,2 G (¢, %4(x,°) ; K1)dx,”

+» 9
_"fIT )z ay” (%% 7% (%,°) 742 (,)——G (x, x4(x,°) ; K1)dx,°. (52)
vE L Yy ax,“
g1" and fi' are interaction constants. K; is the range constant.
The potential energy of the actions at a distance of the symmetrical vector type is Hin®

Hine®(xo) = —3e1t 2 2 Z 75°(%0) oy, u (0) 92 (¥ ()

7o l#jos=1
——fx"Z ‘Z Zl 74° (%0)B3(%0) v5* (%0) v, (%0) b1, (%),  (53)
i #i os=
d d
By 47 (26) =—, ()7 (o) ——; )4 (x). (54)
ax,; ax,
V. STATIC FORCES BETWEEN NUCLEONS and
; G-I
In order to get the static forces between f —G(x, x'; Ko)dxy' =0, (56)
nucleons we assume in (44) and (52) that the sil9acny

variables of the nucleons are constant. Since ! !
we have in the static case

+0
f G(x, x'; Ko)dxo 2t
o 65" (%) =—T1°P1Ru_1 exp(—KoR ;)

1 o0 i / dsu 8T
= > u-{x—x'})]—
o f  ewli h1 &
—-8—7,’(0,-grad,)R,r‘ exp(—KoR;), (57)
™

1
=—/|x—x'|"texp(—Ko|x—%'|)  (55)
4m Ryu=[x—x]. (58)
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¢; denotes, as usual, the spin of the jth particle
divided by 3%. We have also

gt
d)j(ﬂ)l-l(xl) =~8—T,3aj“Rﬂ_l QXD(—KIRJI)
™

ifif i)
2T a;"’Y:“”—v[Rﬂ—’ exp(—KiR;)]. (59)

8T rm x5

By neglecting all the relativistic corrections we
get

.f
0
¢;°(x1) oo =—7,*(0y-grad,)
8

X[Rytexp(—KoRy)], (60)
% ng
¢;°(x1) s =—1;°R;it exp(— K1Ry), (61)
81
fif
859 (1) ot = ——1,°[[@; X grad, ]
8
X[Rytexp(—KiR,)]. (62)

By introducing the preceding expressions of the
¢ in Egs. (50) and (53), we get the usual ex-
pressions for the static interactions.

We shall now derive explicit expressions of the
¢;* which take into account the retardation
effects in a first approximation. In the Heisenberg
picture the operators which represent a non-
variable physical quantity at two different times
are related by a contact transformation

B(xo") = U= (%0, 20) B(xo) U(x¢', x0).  (63)
U is an unitary operator related to the Hamil-
tonian. When the Hamiltonian does not depend
explicitly on the time,

) =exp[ By —xo)J. (64)
he
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By taking into account (63), we may write

+w
by (x) =dadt f U-1(x,0, 0)[7*(0)T'5(0)
XG(xv xj(O) ) KO)(-\”:°(0)=I:‘7):|U("\:.10) O)dxfo

7 +o
+5f0T£w Uz(x2, 0)[7,’(x,°) T (%)

d
Xy #(x,°)—G(x, x4(0) ; Ko)]
x4 \

X U(xy°, 0)dx,0. (65)
In our approximation treatment we shall use the
operator U corresponding to an unperturbed
motion in which the nucleons do not interact
with the meson fields and the actions at a dis-
tance are neglected. We shall denote the operator
U of the unperturbed motion by Up:

7
Uo(xo/, x0) = exp[ ——H,,(xo —xg)]
he

Xexp[——z—{z, H,} (xo’—xo)], (66)
he

so that

— 00

L i
¢J°'(x) =380 f exp[éﬂ 1x1°]
X {752(0)T4(0)G (x, x,(0) ; Ko) }

) ) D
X exp[ ——H ,x,“]dxj" +—fo f
he 2

-— 00

d

75°(0)T'4(0)v,#(0)—

7
Xexp| —H x °]
p[hC 4! ax,“

i
X G(x, %,(0) ; Ko) } exp[ —;L—H,x,“de,". (67)
C

The operator which represents a physical quantity in the Schridinger picture is related to the cor-

responding operator in the Heisenberg picture

B(xo)Schri)rl = U(xo, O)B(xo) U"I(XQ, 0)

(68)
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In our approximation

R ne

¢, (x)schrod = exp[ —I—H ]xo]q‘),“(x) expl;—H ,xo]
; e

c

—0o0

e ) )
= %gOTf CXD[}—H,-ZJO] { T,"I’,G(x, Xj5 K()) }Schr('id exp[ —]—‘I{jZ;OJdeO
1c 1c

) R 7 d
+—f0ff expl:""‘Hijo]l TjaI‘j'Yj” G(x, x,; Ko) }
2 he 9

7
exp [ __Hijo:Ideo, (69)
xX* he

-0

Schrod
z,°=xj°—x°. (70)
It is worth while to remark that ¢;*(x)scnrsa does not depend on x, because G(x, ' ; K,) is a function

of xo—x¢’. The matrix element (I| Hine® | I1)seprsq of Hint® between two states in which the nucleons
are free and have the momenta (p;, p;/?) and the energies (cp;1%, cp;11%) can be easily computed by

using (69).

(Z| Hune® | ID)serss =312 3 3 5 o(p, —p,7+pi—piD) IT oo —p )

7 =i s

rl, g

XART2 (Pl —pi18) (by, of — pu o1 — Ko} [ (go") 2(Z | 7,°7 T, T, | I1)
= (f)2 2| 77Ty T oy | 1) (P, — D1, u2) (1, F — P, 1)
+go' fol i (pr uT — P D I | 7507 T T (2 — v5%) [11)]. (71)

This expression of the matrix element of the
interaction corresponds to Moller’s formula!? in
the electromagnetic case. Leite Lopes® and
Tamm® have derived expressions of the matrix
element of the relativistic interactions between
nucleons analogous to (71), by using the usual
field theories of the nuclear forces. The nature
of the retardation effects does not appear clearly
in their derivations because they come in through
the recoil of the nucleons in the virtual enrissions
and absorptions of mesons.

VI. DISCUSSION

In the preceding section we derived approxi-
mate expressions for the relativistic interactions,
of the same type as those derived from the field
theory of the nuclear forces. Nevertheless our
formalism and the field theory do not lead to the
same description of the nuclear forces. We ob-
tained linear operators for the relativistic inter-
actions analogous to those of Leite Lopes and
Tamm, in an approximation treatment. But,
wn an exact treatment of the relativistic interactions,

" C. Méller, Zeits. f. Physik 70, 786 (1931).

the fundamental equations we must solve are not
linear.

The fundamental equations of the exact theory
are those which determine the operator U:

ad
the—U (x50, x0") = U(xo, xo')H(x0),  (72)

(‘)xo

U(xo, xo) = 1, (73)

because we cannot use the Schrédinger equation
unless we know beforehand the explicit ex-
pression of Hi,, and we cannot compute Hiy
without knowing U.

We do not know whether the exact expression
of [Hintschrsa 1S time independent, as it is in
the approximation considered at the end of the
preceding section. Thus it is not certain whether
it is possible to obtain stationary states in the
exact treatment, at least with the usual definition
of a stationary state. It may be necessary to use
indirect methods, such as that of the Heisenberg
S-matrix, in order to get the energy levels of
the closed stationary states.

The approximation method we have used to
investigate the retardation effects differs essen-
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tially from the perturbation method. That
method may be considered satisfactory in the
case of collisions of high energy nucleons, but it
is not certain whether it describes correctly the
retardation effects in the case of the nuclei,
because of the small energy of the nucleons. It is
important to take into account the preceding
remark because of the difficulties which exist in
the relativistic treatment of the nuclear forces;
in this case we ought rather to start from an
unperturbed motion in which the retardation
effects are neglected and use its operator U in
the computation of the first approximation values
of the ¢;* and ¢;®¥, instead of the operator U,
which corresponds to non-interacting nucleons.

We have developed the formalism of the
actions at a distance between nucleons by
analogy with the corresponding formalism for
the electromagnetic case (references 1 and 2).
We have replaced the inhomogeneous d’Alembert
equation by the inhomogeneous Klein-Gordon
equations (43) and (51) and, by taking their
half-retarded, half-advanced solutions, we ob-
tained actions at a distance which coincide in a
first approximation with those given by the field
theory. It is important to notice that the method
of the actions at a distance allows many other
possibilities. For instance, we may replace the
Green function G(x, x’; Ky) by some other in-
variant function in Egs. (44) and (52). By a con-
venient choice of that function we can give a
finite radius to the nucleons, from the point of
view of the actions at a distance, without chang-
ing their point interaction with the meson field
or the electromagnetic field. We shall now
examine in some detail the introduction of such
a radius. Let us replace the Green function G by
the function Gy:

1
GA(x, x’ 0 Ko) =:FAI(52)J0(KUS)
™

K,
———F(s?) J1(Kos), (74)

ms

s=[(xr—x'#)(xy _xul)]§:

1 o? £
f exp ( - —)dt.
At J_ At

(75)

FA(SE) =

(76)

IN THE MESON THEORY

Jo and J; are Bessel functions, A is a constant
with the dimension of a length. We have

limGa(x, x"; Ko) =G(x, &' ; Ky).

A-0

(77

Ga(x, x"; Ky) depends only on the variable s?
and is free of singularities. In the computation
of the static forces G, can be replaced by Ga.

Ga(x, x'; Ko) =8(xo—x0)Ka(x, ¥'; Ko),  (78)
+c0
K\ (%, x'; Ko) =f Ga(x, x"; Ko)dxo. (79)

Ki(x, X/, Ky) and its derivatives of the first and
second order are finite for x=x'. Thus we can
get rid of the singularities in the interaction
between nucleons.

VII. THE “FREEZING” OF THE DEGREES OF
FREEDOM OF THE MESON FIELD

Let us introduce new variables for the de-
scription of the meson field:

Py, 22 (k) +1Py, o' (k)

=[4, (k) +4.,7(k)], (80)

Py, (k) —1Py, o' (k)
=[45.P"(k)+4.,0%k)], (81)

QzJ. nl(k) ""iQp. "2(k)
=[A4, P (k) =4,k ], (82)

Oy, »' (k) +1Q5,*(R)
=[4, P (k)—An, (k)] (83)

The only non-vanishing commutators between
the new variables are those between a P and
the corresponding Q:

[P, (k), Qo' (R") 1=[Pn(k), Qn™ (k") ]

— —"L.(S"'ap_-k'. (84)
We have
Ny n® (k) = Na, , (k)
=2 Qﬂ. nl(k)Pp. nz(k) e Qp. nz(k)Pp. nl(k)- (85)

Let us consider the Fourier expansions of the
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fields Graa? ™.
braa® (%) = (he/ V)t 3x koA raa™ (k)
Xexp(—ikty,).  (86)
It results from (82) and (83) that
A rad® (k) =3[ Q5" (k) —iQ,*(k) ], (87)
A raa™(k) =3[Q41 (k) —1Q,%(k) ]. (88)

Since the only fields that come in the inter-
action between nucleons and mesons are the
¢raa??, it follows that the interaction can be
expressed in terms of the field variables Q.
The wave function x of the system nucleons
plus field is a function of the variables of the
nucleons and variables of the field which we may
take as the P. If x does not depend on the P
corresponding to a given wave vector k, we have

[N n P (k) = Na , (k) Ix=0,  (89)
Araa®"(k)x=0, Awa®™(k)x=0. (90)

Therefore:

In the state of the system represented by the
wave function we consider those degrees of freedom
of the field do not give any contribution to the energy
of the field and to the interaction energy between the
nucleons and the field.

We shall call “frozen’” degrees of freedom
those which correspond to values of k whose P
are not involved in the wave function of the
state in considerations. By using the ‘‘freezing’’
method we can get rid of the divergences.

The simplest application of the ‘‘freezing’ is
the elimination of the infinite self-energies. If we
assume that the wave function of the system free
nucleon plus meson field is described, in the rest
system of the nucleon, by a wave function in which
all the degrees of freedom corresponding to values
of | k| above a given limit are “‘frozen”, we will get
a finite self-energy of the nucleon.

It is important to remark that there are exact
solutions of the Schridinger equation of the system
nucleons plus field in which the degrees of freedom
of the field corresponding to any given set of
vectors kK are ‘“‘frozen.” Indeed the freezing con-
ditions

Qnn"(k)x=0 (91)

will be fulfilled at any time if they are satisfied
at the initial time.

It is possible to introduce a more general kind
of ‘“freezing” which we shall need later. The
freezing conditions (91) are equivalent to (90)
which can be split into two groups of conditions

A rndp(k) X A radp*(k)x = 0, (923-)
Arndn(k)X=Aradn*(k)X=0. (92b)

The conditions (92a) and (92b) ‘“‘freeze” the
interaction between the nucleons and the degrees
of freedom corresponding to the wave vector k
in the two radiation fields ¢:aq? and ¢raq®, re-
spectively. We can associate with the conditions
(92a) and (92b) the following ones, respectively,

[N,® (k) —N. O (k) Ix=0,  (93a)
LNV P (&) — N, (k) Ix =0, (93b)

which will be satisfied as a consequence of
conditions (92a) and (92b). Therefore, if we
impose the conditions (92a)—(93a) the degrees of
freedom of the field ¢:aq? will not give any con-
tribution to the energy of the system nucleons
plus total meson field in the state in considera-
tion. It is therefore possible to ‘‘freeze” sepa-
rately the degrees of freedom of the two partial
radiation fields ¢r.a? and ¢rq™ The possibility
of ““freezing’’ separately degrees of freedom of the
two radiation fields is not necessary in order to
eliminate the divergences, but it may play an im-
portant part in the explanation of the anomaly
of the magnetic moments of the proton and
neutron as well as in the explanation of the
difference of their masses.

VIII. THE PHYSICAL INTERPRETATION RULE

Let us assume that we want to compute the
probability of a transition in which are involved
1, positive mesons and /, negative mesons with
the momenta 7k, (r=1, 2, ---l,) and &k,
(s=1, 2, ---1,), respectively. We shall use a
wave function xsr of the system particles plus
field involving only the P, corresponding to the
k, in the ranges (k,—3Ak, k,+3Ak) and the P,
corresponding to the k in the ranges (k,— 1Ak,
k,+3Ak) and Ak is a small vector with a length
of the order of V=% We can satisfy the Schro-
dinger equation of the system nucleons plus
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meson field with such a wave function because
the terms of the Hamiltonian of the system,
which involve field variables corresponding to
k’s outside the relevant ranges, give vanishing
contributions when applied to our ‘“frozen”
wave function. The ‘‘frozen’” wave function x;,
satisfies a reduced Schrédinger equation which
results from the exact one by dropping all the
terms involving the frozen degrees of freedom.
We shall now make an assumption :

The reduced Schridinger equation must be
treated in the same way as the usual Schrédinger
equation. of a dynamical system with a finite
number of degrees of freedom, the degrees of
freedom of the nucleons, and the meson field which
1t involves.

It results from this general assumption that
the wave function x,, must be normalized as the
wave function of a system with a finite number
of degrees of freedom. It would not be possible
to normalize x;,, if we would consider it as the
wave function of the nucleons plus the ‘‘un-
frozen” meson field. In order to formulate the
rule of physical interpretation we shall take as
variables, in the reduced Schrédinger equation,
the numbers of mesons N, ,®)(k). The initial
state of the observable meson fields is charac-
terized by the occupation numbers 9,(%,)r and
N.(ks)r; the final state of the observable meson
field is characterized by the occupation numbers
Np(kr)r and 9T,(ks)r. We shall associate with
these observable states the states of our for-
malism characterized by the occupation numbers
Npy® ()1, NoO(k)r, Na®P(ko)r, Np©(ko)r
(initial state) and N, (k)r, N, (k:)r,
N, (ks)r, N, (k) (final state).

NI)H—)(kr)I:SZp(kr)h Nn(+)(k.)1=f)ln(k,)1,
(94a)
N2 O (kr)r =N, (ks)r=0,

NWH-)(kr)F:mp(kr)F; Nn(+)(ks)F=mn(ks)Fy

(94b)
N,.(_) (kn)p = N,,(_)(ka)p =)

Let us denote by A the total number of absorbed
and emitted mesons in the physical world (ob-
served number). We shall assume the following
rule of physical interpretation :

The probability of the transition 91—, in the
Physical world, is equal to the product of 2* by the

probability of the associated transition computed
with the reduced Schridinger equation.

This interpretation rule is similar to the rule
introduced in the electromagnetic case by

-Schonberg,? it is also similar to one of the inter-

pretation rules given by Pauli!? in his extension
of Dirac’s method of quantization!® to the meson
field. There are other possible interpretation
rules, similar to those considered by Pauli, but
they are more complicated than the one we have
formulated. Moreover, Schénberg has shown that
the corresponding interpretation rule for -the
electromagnetic case can be justified by con-
siderations of correspondence with the classical
theory ; a similar justification could also be given
if we would develop a formalism analogous to the
one given in this paper for pseudoscalar neutral
mesons, by considering the classical theory of
point nucleons interacting with a pseudoscalar
neutral meson field. The interpretation rules
which do not use the negative energy particles,
in our type of quantum formalism, correspond to
the time boundary conditions of the classical
theory of point particles which exclude the
indefinitely self-accelerated motions of the par-
ticles.b

IX. SELF-ENERGIES AND MAGNETIC
f MOMENTS

The application of the ‘“freezing’”’ method to
the computation of the self-energies and mag-
netic moments is not so straightforward as its
application to the computation of transition
probabilities. We shall introduce the following
“freezing” criterion :

In the computation of the self-energies, magnetic
moments, and other similar effects in which a
nucleon tnteracts with the meson field in vacuum,
we shall use wave functions of the system nucleon
plus meson field in which the degrees of freedom
of the two radiation fields, ¢ra® and ¢raa®, corre-
sponding to momenta of the mesons above hK,
and hK,, respectively, are ‘‘frozen,”’ in the rest
system of the nucleon. K , and K , are two constants
of the order of K.

The quantities we are considering can be com-
puted as average values of operators O of the
form O®+0®), O involving only the field
¢, and O involving only the field ¢, In
the case of the self-energy the operator O is
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%Hl=%(Hl(+i+H'(-))-

1/ = 4D T4 (0) + T4 ()
7 )

F—fol'v*{ T——¢® (xn)

2 Xt

d
& (wy) 1. (95)

axN"

= 5

The x5 are the coordinates of the nucleon in
consideration. In the case of the magnetic
moments the operators O® are the M, ).

]l[‘"(:i:) = %.f(xusv(:h) __va“(i:))dax’ (96)
e AP (x)
5.0 = (40" (
2he ox*
0p®* (x
— g (x)_Lz)
. x5

efo
+—Ty*5(X—Xy)
2hc

X {To® (x) —T*¢®*(x)}. (97)

Besides the preceding ‘‘freezing’’ rule, we shall
use the following computation rule which is
obviously related to the physical interpretation
rule of the preceding section:

In the computation of quantities such as the
self-energies and magnetic moments of the nucleons,
we must take the average of 20 instead of the

average of O 40, in the state of the system
nucleon plus ‘‘frozen’’ meson field in which there
are no mesons in the ‘unfrozen’’ states.

Thus the self-energies are given by the fol-
lowing formula

AE=(H'®)y, (100)

and the corrections of the magnetic moments by
a formula analogous to that given by Jauch!® in
the one-field theory

Apz=2(M15F)p, (101)

assuming that the spin of the nucleon is directed
along the x® axis. For the sake of simplicity we
shall put go=0 and neglect the recoil of the
nucleons. Thus we get

(AM)p=— 105 f ok (-k;)zk%ik, (102)

472c? ko
f02 KN k 2
(AM)y=— f (—) Kk, (103)
472c? 0 ko
8f02 Kp k 4
(Aps)p= f (—) dk, (104)
127%he 0 ko
Gfo2 EN s B\ *
(Apg)y=— f (—) dk.  (105)
127%hc 4y \ ko

The existence of the two “‘freezing’’ limits, Kp and
Ky allows us to get different self-energies for the
proton and the neutron.

18 T, M §Jauch, Phys. Rev. 63, 334 (1943).






