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CLASSICAL THEORY OF THE POINT ELECTRON

Parr II
Stationary motions

1. The Lorentz-Dirac equations of motion do not describe
satisfactorily all kinds of motion of charged particles, in particular
they do not allow for radiationless accelerated motions. These motions
are called stationary in quantum theory and we will conserve the
same denomination in their classical theory. Some of the motions
investigated by Dirac .(1938) and Eliezer (1943), in which the Lo-
rentz-Dirac equations lead to physically meaningless results, be-
long to the stationary type.

It may look absurd to assume the existence of radiationless
accelerated motions of charged particles in classical theory, there
is, however, a very simple consideration which indicates that the
existence of classical stationary states results precisely from the
existence of the quantum ones. Ix:ldeed, there will be quantum
stationary states for any value we give to the Planck constant h,
therefore it is certain that such radiationless states will exist when
we take h=0, provided we assume that it is possible to go over con-
tinuously from classical to quantum theory, by making A tend to 0.

It was shown in the first part of this paper that the radiation
fosses and the acceleration momentum result both from the inte-
raction between a particle and the radiation field. Moreover, if
we assume that in certain states of motion there are no radiation
losses there will be no acceleration energy either, since both can
nct be separated, as it was shown in section 3 of Part I. There-
fore, in stationary states of motion the partiticles do not generate
radiated fields, so that the total field of a particle in stationary mo-
tion coincides with the attached field. But we have seen in section 13
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of Part I that attached fields give rise to actions at a distance,
hence :

The forces between the particles of a system in stationary motion
are pure actions at a distance.

If we assume that there are no radiated fields, the generalized
Tetrode-Fokker principle, equations (74)-(75) of Part I, applied
to a system under no external influence becomes the original
Tetrode-Fokker principle:

ATLE =10, (1)
——ij Cdej_
J

e e dxi dxj A
— ZZ,‘%‘ ffdsl ) 0 { — P} {xio— xj.p})d& ds; (2)

Instead of the Lorentz-Dirac equations of motion we have now

2 W : :
e TG = 83 s, Lo (3)

t,at
s (e, ds;

It is worthwhile to remark that the Maxwell equations are
satisfied by the attached fields created in stationary motions, since
the attached and retarded fields are solutions of the same Maxwell
system.

In stationary motions there are no difficulties due to the acce-
leration energy because there is no radiated field and the accelera-

tion -energy, which is a potential energy of the partlcle in relation
to its own radiated field, vanishes.
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CLASSICAL THEORY OF THE POINT ELECTRON

2. In the preceding section we derived the equations of mo-
tion of a system in stationary motion by using the field theory of
the forces. But, since the forces between the particles of a system
in stationary motion are actions at a distance, it is presumable that
the theory of the stationary motions can be developped without -
using field ideas. We will see that it is indeed possible to get directly
the original Tetrode-Fokker action principle by a suitable extension
of the Hamilton principle of non relativistic dynamics based on the
following assumptions: p

1) In a stationary state of motion of a system each particle
acts on the others but not on itself. -

2) The force acting on each particle depends on its velocity
but not on derivatives of order above unity of its coordinates.

3) The forces between the particles may be advanced or re-
tarded, or of both types, but ‘“propagate” themselves in both di-
rections of time with the velocity of light.

4) The forces exerted on each particle by the others are inde-
pendent and add up vectorially.

5) The force exerted on a particle by another may depend on
different instants of the motion of this particle, in such a way that
the parts due to different instants of the motion add simply up.

6) There is a hamiltonian action principle for each particle
and a hamiltonian action principle for the whole system.

7) All the potentials appearing in the action-integrals are to
be considered as functions of the particles’ variables and variated
accordingly.

8) The potentials do not involve the masses of the particles.

From assumption (6) it results that there is a potential function
¥; for the force acting ‘on the particle Q;, such that the equations
of motion are given by the hamiltonian action principle:

o [Cme? |/ 1- 6 +%) dt=0 4)
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From assumption (2) it results that the ¥; are linear functions
of the components of the velocity of Q;:

b dxl;L <) .
G =gl b 7> A (&) A%

J ifj

The numbers e;f are characteristic coefficients of the Q.
The summation in (5) takes account of assumptions (1) and 4).
It will be assumed from now on, for simplicity's sake, that there
are only two particles in the system. Since there is a hamiltonian
action principle for the system, according to assumption (6), there
must be an integral L* such that the equations of motion of .the
particles of the system result from the ivariational equation:

N0 S ©)

Jisk is a sum of three terms
L'=Li+Ls+Li @)
L* depending only’oh the variables of Q, and Lj, corresponding
to the interaction between the two particles -of the system. Taking

in account (4) and (5) it follows that, by neglecting eventually di-
vergence expressions and a constant factor, we may take:

Lf= = mc _/.'Lm ds; ! (8).
e e/ R dx}‘A e N7 dxb '
Liz = — 7 s, e ds; = — T e A ds;  (9)

e o) —

From assumption (5) it results that A may be represented by
an integral taken along the world line of Q;. Taking in account (9)
we get y
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A= o dy )

the aj” (x;, x) being some functions of the zf and x°. But, since
the forces “propagate” themselves with the velocity of light, a}”
must be some § — like function vanishing ‘everywhere on the world
line of Qj, excepting at most the two zeros of (x!—ax%) (% — x).
Therefore, A (x) is a sum of two four vectors built respectively with
the variables of Q; taken at the points where (xf —x*) (xu—x,)
vanishes: '

Ay. = A}f'rel + A_‘;",.adv (l I)

But, the only four vectors with the dimensions of a potential that
we can build with the variables of Q;, at a point of its world line,
and the coordinates x#* of a point P are of the form

a; being an arbitrary dimensionless constant, because of assumption

(8). Hence, we must have
[ ) 1 i ]
g i Sl
@) 7 ds; 4@ ’ ds; (13)
e

At =
J(x) (2%} [d_»lf(x WA Y [fdﬁ( S
e el T e ds, Xjp — Xo

ret

or, in integral representation

’

S
J
dx

ik
AJ‘L(x) :Ze;aj('l)‘ SJ, 0 ({xjP P xp} {xj,P o xP})de O
'/

d

— o
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e (z)f Cz: 5 (; ? — x°} {xJp—xP}) ds; (14)

s

In order to fulfill the symetry condition (9) we must take

a) = al = & = =a (15)
so that
== 2 derU-
v, = o)/ 16 2 At (16)
=206 ' (16a) -

The expression (16) of. ¥, shows that the equations of motion
are of the form (3). The action integral L* can be put in the form
given by equation (2).

3. The simplest case of stationary motion is that of an iso-
lated particle, in which equations (3) become

d?x

—_— 0

ds? 0%
so that

%;— = const. (')

The preceding result shows that the principle of inertia for a
charged particle can be taken as :

The motion of an isolated point charge is stationary.

In this way we get rid of the self aeceletated free motions
allowed by the Lorentz-Dirac equations of motion.

6 (Sum., Bras. Mat. — Vol. I, Fasc. 6, pag. 82)
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The stationary Kepler problem

4. Let us consider a system of two charged particles, one of

them having an infinite mass and the other a finite mass. The par-
ticle with infinite mass is in uniform rectilinear motion, so that it is
possible to choose a Lorentz reference frame in which the heavy
particle is at rest. In this reference frame the equations of motion
of the-light particle are:

d _mvi . ere

— = 19
dt]/l —Bf rfz e .

e; and e; being respectively the charges of the light and heavy par-
ticles; v; is the light particles velocity. Equations (19) are precisely
the equations studied by Sommerfeld in the “old quantum theory
of the atom, hence:

There are classical stable orbits in the electromagnetic Kepler
problem. '

This result suggests that there may be a classical theory of
non collapsible atoms. Of course this point can only be settled by
a study of the stationary two body problem, taking in account the
recoil of the heavy particle. It is, however, very probable -that
such non — collapsible atomic models do exist because there is

conservation of energy in stationary motions, as it was already
shown by Fokker (1929).

Conservation of energy and momentum

5. Fokker has shown that, in motions described by the action
principle (1) — (2), there are no permanent losses of energy or
momentum.

In order to get an intuitive image of the conservation laws in
stationary motions, it iS convenient to compare the mathematical
formalism of their theory with the very similar one of a system of
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four dimensional interacting flexible strings. The double integrals
which appear in L* correspond to the interaction between the
strings, and, as in the case of the strings, in order to get conservation
of energy it iS necessary to consider the entire lines, because the
energy can be distributed and move along the strings or world lines.

Let us transcribe the equations of motion (3) expressing the
F! by means of the potentials A},:

dx.l ( aAnatvv v aAi’a‘;P- ) )

2 .
m~cd 10 E
4 V2 ASia v
ds; ey dSJ ax;’ oxj

(dA,',az;p_ ¥ (Z_x_; aAz',ai;V ) (20)

dS Y dS S/ 0 x}"'

0
(63 .

ifj

Hence:

d” ( dx_/U- + eJ Z Anaty.& ) ej Z dxj aA"ﬂ"V (21)

ds; c = c & ds;  dxt

We do not have ordinary laws of conservation of energy and
momentum because the expression in the right-hand side of (21)
is no exact differential. In order to get the conservation laws, let
us observe that

xal (x_/) dxl 5({ ?—x, f {x,,p — X0 }) ds; (22)

and consider the integral E,,

-+ oo
I $ 5 e¢ dx, dx;,
Bomimg 2.2 -~ fffa({x?— f}{xz,r—x,,;}) “‘d ds; (23)
J 14
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We can put equations (ZOj in the form:

njc dzxj;j_ ¥ 6 Ep(,t
ds; dx;(s;)

(24)

14

Equations (24) put in evidence the conservative character of
the stationary motions, they are a straightforward generalization
of the equations of motion of a conservative system of non
relativistic dynamics. Indeed, let ‘'us consider a system of points
of non relativistic dynamics acting on each other by forces deriving
from a potential ¥, wich may depend on derivatives of any order
of the coordinates. It can be seen easily that the equations of motion

of such a system are

P O W :
mi=—s -5xj~’ Ydt (a=1,2,3) (25)

because the components of the force acting on the j-th particle are

v d(’a\lf) dz('a\p)

it At Azl bt | o
oxf  dt\gxl/ A\ gxo

(26)

E, is, therefore, analogous of the time integral of the po-
tential ¥, which is the potential energy in the case of purely po-
sitional forces. In the relativistic case there is no analogon of ¥ but
only of ¥s time integral. This is the reason why the conservation
laws of the theory of stationary motions do not have the usual
form but must be taken as average conservation laws.

[t is worthwhile to remark that E,, is a relativistic genera-
lization of the magnetic potential energy of a system of linear electric
currents.
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6. The preceding considerations.can be extended to the case
of non stationary motions and to the Frenkel-Synge theory (Frenkel
1925, Synge 1940).

The Lorentz-Dirac equations of motion are:

mic A% k] ¢_i_x_," <_‘3A_. Laty GA,,,,‘L‘)

LS <~ s
ds; e 1% ds; \ ga ox;

(5 dxv aA[.rad'v aAimdp.
e __,( A ) 27
(FhT dS_,' 3.12}). 335}‘ ( )
Therefore:
229
s d Lo _ 8 Epsr i 2 dx, B (28)

ds;  oxi(s) cds

The dissipative character of the non stationary motion arises
from the circumstance that the expressions

e, dx;

Cd Fmle.v

are not functional derivatives of a function of the world lines of the
particles. This can be easily seen representing the Aly by means
of integrals taken along the world lines of the particles and computing
the functional derivatives of the second order.

In the Frenkel-Synge theory it is assumed that no part of a par-
ticle's field reacts on it and each particle acts on the others by means
of its retarded field. The corresponding equations of motion are:

d X, bt 2l ) e/

dx;
s =220 o (Bl o+ P (29)

C itj
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Hence:

d2x; A0 et e dx;
1 A — o + o Fl' rad;{ky =7 30
m;c ds? T aat(s) | © % rad;ik ds, (30)

It can be seen that, now, the system is not conservative, in the
same way as in the case of the Lorentz-Dirac equations of motion.
In the Frenkel-Synge theory the Larmor loss disappears, because
it is due to the interaction between a particle and its own radiated
field, but there is still a loss due to the interaction bwtween a par-
ticle and the radiated fields of the others.

7. In section | the theory of the stationary motions was de-
veloped within the frame of the field theory. Now we will complete
" the field theory of the stationary motions by introducing the stress
tensor of the field. The stress tensor can be defined, as in the-case

of non stationary motions:

4r TV = F*e Fo, + éag (F?° Fog) —

) 1 X
— SVF Fravey = 8% ( X Fia Fateo) (1)
J J

Fev = > Flu (32)
J }

We get, as in the case of non stationary motions, the conserva-

tion equations: .

9T = dxf
ML >0 Fiae o &0 (0= )/ 16 (33)

i J¥Fi
There is a four vector of energy and momentum of the field G}

Gt = | Towdr : (34)
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which satisfies the equations:

e e
t i j*i
— lim Z el i diS ‘ (35)
3> p=1 A : ] g

51

-

u is the unitary vector on .the outer normal to the surface 2. The
boundary integral in the right-hand side of equation (35) does not
vanish, ‘in general, it vanishes only in the average, as we shall see
later, in the discussion of ‘the boundary behaviour of the field. Thus
the field theory of the stationary motions leads to the same con-
clusion regarding the conservation laws ‘as the theory of actions
at a distance: they must be considered as average laws. The rela-
tions between E,,, and Gf are dlSCUSSed in the appendix.
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Behaviour of the fields at infinity

8. In order to examine the behaviour of the various kinds of
fields at infinity, it will be assumed that the charges are distributed
continuously. and a four vector of charge and current density - J»
will be considered. This assumption does not introduce any restri-
ction, since the case of discrete charges is the particular one corres-
ponding to 6 — like densities.

The retarded, advanced and attached potentials satisfy the
same inhomogeneous d'Alembert equations:

92 A
9x° dx,

= 4x J¥(x) (36)

We must find the boundary conditions which lndlwduate the
three types of solutions:

Al [J (Qt_ 3 & (37)

v

Ay, = fjr* th+) (38)
A, = f[ju( )%/*(Qwr )ild; (39)
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. Equations (37) show that the contribution of each charge
element to the retarded potential is an outgoing spherical wave and
equations (38) show that the advanced field results from the super-
position of incoming spherical waves, each charge element beha-
ving as a sink. The attached field results from the superposition
of both incoming and outgoing spherical waves and is symmetrical in
relation to both. Thus we get an intuitive picture of the reason why
charges radiate in non stationary motions, when they create re-
tarded fields, and do not radiate in stationary motions, when they
only create attached fields. :

It is clear that the boundary conditions of a non stationary
state are compatible with the existence of external waves,- since
these waves behave at the boundary as-a superposition of outgoing
spherical waves. But the boundary conditions of a stationary state
must be symetrical in both outgoing and incoming spherical waves
5o that they do not allow for the existence of external waves.

9. In order to get the boundary conditions it is necessary to
consider the general solution of the d’Alembert equations (36) given
by the Kirchhoff-Lorenz formula (¥):

(Bl G e
Av = e ds 4
\%

r 47Tv r on

?
4 1 r
0) aAu(Q,g_“)]
I I |
+47rf[A‘*(Q,z— e e )

MM
=

There is a formula analogous to (40) in which appear advanced
instead of retarded quantities:

f]‘*(Q,tJr;) lfIJAP'<Q"+£)
Al = : dt - 47} r, s Lo liiels o STl

on

% z

(*) n is the inner normal to X.
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1

I 3 aAu(QH—»« ( |
T f[A“(QH—) L C>]d: (41)

In formulae (40) and (41) V is the region of space enclosed by
the surface =. From (40) and (41) we can get easily conditions which
charcterize the advanced and retarded potentials:

: (& AL

ff:or(:")—r-l_ca)Am(r’t—C)—o (42)
) 19

1 e ST T Aav

e (g L) Al () =0 e

From the definitions of the retarded and advanced potentials
it follows that these conditions are also necessary, as we shall see.
Conditions (42) and (43) generalize respectively Sommerfeld’s

“Ausstrahlungsbedingung” and “Einstrahlungsbedingung™™. (See
Frank — v. Mises, Differentialgleichungen der Physik, vol. II,
pg. 804, 1935).

10. In order to get a clearer understanding of the behaviour at
infinity it is necessary to compute the Poynting vector P and 1ts
flux. For this purpose the fields may be reduced to their parts va-
rying inversely with the distance, which are given by the formulae (*)

Enel = — f: A::[ Hrzl — [u XEl‘tl] ] (44)
I s 4
Eadv = — C Aadv Hadv — [Eadux ul (45>

(*) See Pauli, Handbuch der Physik XXIV/1, 203, 1933.
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: 3 (u. ro)
A= -fl (Qt—-— + 212 g, (46)

/

= /J"(Q,tJrR—(EiQ—))dr 47)
c (&

Jr=)]-0-wu (48)

u is the unit vector in the direction from a fixed point O, inside the
charge distribution, to the point in the wave zone where the field
is computed, R is the distance between O and this point; rq is the
position vector OQ and J is the current density. divided by c.

In the wave zone we have expressions of the type (46) or (47)
for the retarded and advanced potentials respeptivély, therefore
conditions (42) and (43) are necessary as we said in section 9

From (44) and (45) result the following values of the Poynting
vectors P of the- fields:

@ -7
P,‘.[ = 4n Er u
(49)
c 2
P.,.= — o Eqs

Equations (\49) show that there is an outflow af energy in a
retarded field and an inflow of energy in an advanced field.

The Poynting vector of a field F*¥ obtained by superposition
of retarded and advanced fields

Fv=a F% + b F™ (50)

P=az Prrl—b2 Paiu ! (51)
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In the case of the attached field a=b= é and so

= B B (52)

Pa= 16

We will see in a moment that the time integrals of the square

- of the retarded and advanced eletric fields of the same charge dis-

tribution are equal. in the wave zone. Therefore:
JioPLdt =0 (53)

Equation: (51) shows, by taking in account the aforementioned
equality of the time integrals of the square of the retarded and
advanced fields, that the only linear combination of the advanced
and retarded fields which does not lead to radiation losses and satis-
fies the Maxwell equations is the attached field. Indeed, to get a vanis-
hing time integral of the Poynting vector P we must take a?=b% and
in order to satisfy the Maxwell equations we must have a+b= 1.

In order to compute the time integral of the Poynting vector
it is convenient to represent J by a Fourier integral:

J:j_?m I(k) e—ickt dk (54)

The Fourier integrals of the advanced and retarded potentials
and fields in the wave zone are:

_+..m

Al,:,[ i ;—szl" (k)e—ik[ct—R-i—(u.rQH dr dk
—(c5]
-+

=% f f I (k) e— ikl + R—t Q) g7 dk
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+

E’”‘ziiffllr(k) ke—ik[Cl—R—!—(u.rQ)] dr dk

—o

+ o
Eadv = -é—ffllr(k) ke-—ikfcl-*-R—(u.rQ)] dr dk

It is well known that the time integral of the square of a quan-
tity M represented by the Fourier integral

(56)

+ ' !
M@ = [ ek m(k) dk (57).

is given by the formula

4o R
f M? dz=-2{f m(k)m(—k) dk (58)

Taking in account formulae (57) and (58) we see that, in the
wave zone, the time integrals of the squares of the retarded and
advanced fields are equal

© +SD
[ Eludi= [ Bl dt (59):

"o — o

+

From (51) and (59) it results that the time integral of Poyn-
ting vector of the radiated field P, vanishes:

-0 0o

fPrmz' dt = 4Cf|: Emd X Hmd] dt =0 (60) 3
m

— oo — 00
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Conservation of the energy of the field and particles

11. Now we can complete the discussion of the conservation
laws. We have seen in sections 6, 7 and 9 of Part I that in the
non stationary states of motion there is no exact compensation
between the energy lost by the field and gained by the particles,
on account of certain fluxes at infinity, formulae (36), (42), (48)
and (49) of Part I.

Formulae of the same form do exist in the case of statio-
‘nary motions, for instance equation (35). Therefore it cannot be
be said that the energy and momentum of the system of the field and
the charged particles is rigorously constant in any case. Let us see
wether thery fluctuate or there are permanent losses.

The surface integral that appears in equation (36) of Part I,
and the analogous one of the case of stationary motions are:

\ r
) i

U = ‘;ﬂ:\/‘ ( [EXH] T} Z [E[,al X H,’,al]; n ) d DY (61)

<1
=

Taking in account that the time integral of the Poynting
vector of an attached field vanishes we get:

oo +o
c o)
fUdt=4wfd~f([EXH],n>dt (62)

In the case of a stationary motion the total field is a sum of
attached fields, therefore

too
J Uydt=0 (63)

—

Hence the energy oscillates. This result agrees with Fokker's
and explains why there are no radiative losses in stationary motions.
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The case of non stationary motions is more complicated. The
time integral of the flux at infinity does not vanish necessarily
because the Poynting vector points always outwards, unless the
field at infinity falls off faster than r—Z. Let us consider a particular
case in which this happens: a particle is in a state of uniform retili-
niar motion up to the time,, then gets accelereated and finally resumes
a state of uniform motion at the time ¢;. In such a case it is possible
at any instant to find a closed surface dividing the space in two-
parts: inside the region which contains the particle — the field
has a part varying as r—%; outside the surface the field falls off as
—2. The existence of this surface results from the finite velocity
of propagation of the field disturbances and from the limited du-
ration of the accelerated state of motion. Actually the preceding
example is not a possible non — stationary state of motion; Dirac
(1938) has shown that the particle will be already acceler a ted
before it receives the external actions, so that the accelerated part
of the motion will have an infinite duration; nevertheles the flux
at infinity vanishes, because the corresponding retarded quantities
vanish ‘since the acceleration tends to zero for ¢t — — .

The considerations developped in the case of a single particle
can, of course, be extended to any system of particles in non sta-
tionary motion and show that:

There will be no difficulties arising from the conservation laws
if it is assumed that the accelerations of the particles of systems, in
non stationary motions vanish for t = —<.

12. The analysis of the conservation laws led us to the in-
troduction of a time boundary condition for t = — «. Dirac (1938)
introduced a time boundary condition for ¢ = 4 @, in order to
determine completely the solution of the third order equations of
motion, which are not yet completely determined by the know-
ledge of the initial positions and velocities. Dirac did not formulate
his time boundary condition in the most general case, he considered
only the case of a single particle which is under the action of external
forces ceasing to act at a time t, and imposed the condition that
after t, the acceleration of the particle vanishes.
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We shall generalize Dirac’s boundary condition in the following
way

The accelerations of the particles of syslems in non stationary
motions which are under the action of external forces, tending to
zero when t tends to + «, tend also to zero for t = + «.

This time boundary condition limits the decrease of the acce-
leration energy not allowing it to decrease indefinitely. If we apply
this boundary condition to the motion of a free paltlcle the self
accelerating solutions will be discarded.

[t. may seem that it is not possible to introduce boundary
conditions for both . time boundaries t = — » and t = + =.
However, Dirac's, treatment of the motion of an electron which
receives a light pulse shows that it is possible to do it in some cases
which are precisely the only ones that have physical signification.
It is possible to satisfy the time boundary conditions in motions
of “hyperbolic” type in which the particles are infinitely separated
for t = — o and fly apart indefinitely when ¢ = .
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The ‘““anti-particles”

13. Until now we have considered two kinds of motions of
a charged particle: the stationary and non stationary motions,
characterized by the kind of field which the particles create. In
both the stationary and non stationary motions the part of a par-
ticle’s field which reacts on it is the difference between the total
field created by the particle and its attached field; the reacting
part vanishes in stationary motions because in such states the total
field coincides with the attached part. The stationary and non
stationary motions we have considered, present a common feature:
their kinetic energies are positive. By, reasons of symmetry we are
led to look for motions in which the total field created by a particle
is the advanced field and for motions with negative kinetic energy.

We will assume that in the states in which a particle generates
an advanced field the part of the field which reacts on it is the
difference between its total field and its attached field. This reac-
ting part coincides, therefore, with minus the radiated field. of a
non stationary state. The preceding assumption can be justified
by an extension of the Hamilton principle analogous to that con-
sidered in section 14 of Part. I, by substituting the hypothesis
that the total field created by a particle is the retarded field by
the alternative hypothesis that it is the advanced field. We will
call the part of a particle's field which reacts on it radiated part.

Equations of motion

14. When a particle generates an advanced field the reaction
of the radiated field creates an acceleration momentum equal to
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minus the corresponding ones of the non stationary motion and
a “Larmor gain', because the radiated field is now:

= g( Y, — Fﬁ’;f) (64)

The fact that there is now a gain, instead of a Larmor loss, is
not surprising because the Poynting vector of an advanced field
points inwards, in the wave zone, as it was shown in section 10.
Such an inflow of energy is not contradictory with the conservation
of energy, if we assume that the acceleration of the particle vanishes
for t=w, in analogy with the corresponding assumption for the case
of non stationary motions. Hence, if there are states in which a
particle creates an advanced field its acceleration must vanish for
t=w, while it is always gaining energy at the Larmor rate. If its
kinetic energy would be positive such a gain would naturally tend
to accelerate it (excluding physically insatisfactory increases of the
acceleration energy). Therefore it is natural to assume that:

“The total field created by a particle is the advanced field, when
it is in a radiating state of motion with negative kinetic energy" .

We will call such motions non — stationary motions with
negative kinetic energy and stationary motions with negative
kinetic energy the radiationless ones.

The preceding assumption, together with (64), leads to the
equations of motion by the same arguments of section 4, Part I:

d(y mc? ) 2¢2d § vv 1

St :JGT:EE 35\ —p22f
a .72
2 e2v2 =3 [%XV}
i E (Fexeav)’

(65)

)

d( Zies=d: 1 d (
il =) i i v -

2e2v‘;2_ [EXV}
TS = a s =

F ext
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A {Em +[Y me” (66)

A particle with the same velocity and position but opposite
charge would be under the action of»the force F’,

F,cxtlz =10 (67)

The equations of motion (167) can be written as follows:

G| A 2\

LML R G T 1+£fv___cxv] ()

di (\/1———?) BBl (l—ﬁz)zl Jet — B2)? = eV
i<—”"\/riv—)_gffd'1 - i( T ) i (68)
dt\\/T—p2) 3 dt|/1-p2dt\\/T-8

'2~ X o2
2e%v " [cxv] _F,

| el BB

Therefore :

“A particle in a non stationary state with negative kinetic energy
moves in the same way as a particle with opposite sign and positive

kinetic energy’.

It should not be concluded from the preceding result that a
particle with negative kinetic energy behaves altogether as a par-
ticle with positive kinetic energy and opposite sign, because the
field it generates is not the same which a charge with the opposite
sign would create. From now on we will call “anti-particle” a
particle in a state of negative kinetic energy creating an advanced
field.

The preceding analysis can be considred as a classical refine-
ment of Dirac’s reasonement which shows that a negative kinetic
energy solution of the wave equation can be interpreted as descri-
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bing a motion of a particle with opposite charge and positive kinetic
energy (See Dirac, Quantum Mechanics, pg 270, 1935). Dirac’s
analysis does not take into account the reaction of radiation as
ours does. We see that Dirac’s conclusions are still classically valid
when the reaction of radiation is considered, if it is assumed that the
anti-particle generates an advdanced field. The advanced field, which
results from a superposition of incoming waves, corresponds to the
“hole”" character of the positron. '

The flow of time for anti-particles

15. The theory of the anti-particles suggests a modification
of some usual ideas concerning the flow of time. The time appears
in the relativistic theories in two different forms:

1) As one of the variables describing the position of the events
in the four dimensional universe.

2) As the proper time of a particle, measured by the length
of the arc on its world line.

I

.The real significance of time is connected with the length des-
cribed on the world line. This can be seen very clearly in general
relativity where it is not possible, in general, to choose x° in such
a way that its differentials coincide with the elements of proper
time of the particles. If we consider the flow of time to be con-
nected with the existence of a preferred direction on the world
line of a particle, there is no reason to admit that it is always
possible to choose x° in such a way that

v ) @"_0 =
_ el . (69)

for all the particles in a flat space time. We may asstime that there
are states of motion of a particle in which (69) is satisfied and states
in which
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dx’
o <0 (70)

If the four vector of kinetic energy and momentum is defined by

dx*
Gr=m 71y

(o

Assuming the preceding theory of the flow of time, the equa-
tions of motion of a particle will be always of the same form, both
in non stationary states of positive and negative energy:

d?x* e (
mec—s = —
ds? c

Fe + Fla (72)

These equations show clearly the equivalence between a change
of orientation of the world line and a change of sign of the charge:
in the factor that multiplies the fields, in the right hand side, the
change of the signs of the charge and of ds have the same effect;
the external field is not affected by the change of sign of ds or e
but the change of either e or the orientation of the world line leads
to a change of sign of the radiated field.

Now it is intuitive why a change of sign of the kinetic energy
should be associated with a substitution of the retarded field by
the advanced one:

"The advanced field created by an anti-particle appears as a re-
tarded field to an observer whose time flows in the same direction as
the anti-particle’s time.
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Indeed, the advanced potential can be expressed by the in-
tegral

@

At (2) =zef% 5({x9_'zp; gxp_zp}>dz 73)

t

t being the proper time of the observer who sees the field created
by the particle as an advanced field, ¢ is a value of ¢ between the
two zeros of the argument of the § — function. An observer whose
proper time 7 flows in the opposite direction

dr

’ (74
dt<0 (74)

will obtain for the potentials of the same field the values:

’

Af;dv(z)=—2ef%5(;xp_zp} l‘xp—xo})‘,iT (75)

\

The expressions in the right hand side of (75) are precisely the
retarded potentials for the second observer; the minus sign which
apparently contradicts formula (84) of Part I arises. from the cir-
cumstance that the argument of the § function increases when r
varies from — o to 7.

The interpretation of negative kinetic energies as effects of a
flow of time in two alternative directions leads naturally to the con-
sideration of stationary motions with negative kinetic energy, in
which the particles generate half-advanced, half-retarded fields.
For an observer whose time flows in the same direction,
the motion of such a system would be a stationary motion of the
same kind of those studied in Part II, but for an 'observer with a
proper time flowing in the opposite direction the motion will appear
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as a stationary motion of a system of particles with opposite signs,
because the attached fields are not changed by a change of the orienta-
tions of the world-lines of the respective particles.

The conservation principles

16. Let us consider now the general case of a field containing
np particles and nj; anti-particles. The stress tensor of the field can
be defined as in section 7 of Part I:

4r T§ = ¥ Fpy + - o8 (F¥" o)

np £ 2 Ny Ny

= Z— F: at zal (Y T Th 6 E (Fx at 1al;ps) (76)

i=1 =l

n; Oy 57 Wy
FW Z :ret + Z 1 adv (77)
=] i=n; 41

Fw is the tensor of the total field, sum of the retarded fields
of the particles and advanced fields of the anti-particles; the par-
ticles correspond to the values of i from  to n; and the anti-particles
to the values of i from n;+1 to n;4-n;;. As in section 7 of Part I
we get:

aTv Z (FPV T utl pv) e; 6 (I‘ rl) dxl ‘)/1 62 (78)

[ ntegrating both sides of (78) over a volume V containing all
the charges we get, by using the same notations of section 7 of Part Il

dGi(V) _ 5, o ey dip s
e e Ze (™ —Ffa) 22 {18
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SALS
— | 2 T ud> (79)
p=1
G/ (V) is the four vector of the energy and momentum of the
volume V of the field:

G ()= T dr (80)

From (79) it follows that the rate of variation of the total energy
of the field is (*):

BAV/ 3 e § :

= Z [E;,a1><H,-.a1]}-n) dz (81)

17. In order to get conservation of energy the contribution of
the first term under the surface integral in (81) must vanish, at
least in average. But now the total field is neither entirely retarded
nor' entirely advanced, it will nevertheless tend to Q as r—2, at in-
finity, if we assume that the accelerations of the particles vanish
for t= — o and the accelerations of the anti-particles for =, as we
did respectively in sections 11 and 14. Indeed, the contributions of
the particles to the field at infinity arise from their motions at t= — e
and the contributions of the anti-particles from their motions at
t=o, since they create advanced fields.

The time boundary condition for the anti-particles at t=c
is of the same type as the boundary condition for the particles at
t=— and is even identical to it for an observer for whom the di-
rection of time-flow coincides with that of the anti-particles. In
the same way as for the particles we must introduce another time
boundary “condition for the anti-particles, analogous to the gene-
ralized Dirac condition of section 12:

The non stationary motions of an isolated system of anti-par-
ticles go over into non accelerated ones either in a finite time or asym-
ptotically for t=—o.

(*) F: is the force acting on the i-th particle.
g
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General principles of the theory

18. In the four preceding .parts of this paper we considered
three different kinds of fields created by charged particles: retarded
fields, advanced fields and attached fields. To each type of field
corresponds a different type of motion: non stationary motions
with positive kinetic energy, stationary motions and non stationary
motions of anti-particles. All those fields satisfy the Mawxell requa-
tions but they are not the only relativistic solutions: any linear
combination F* of the retarded and advanced fields of the particles

s

o i ) G0

will satisfy the field equations, provided:

a;+ b; =1 (83)

Why do the particles not create other linear combinations of
the retarded and advanced fields different from the retarded, advan-
ced and attached fields ? Our theory does not give any answer to
this question. To any choice of the total field created by a particle
corresponds the stress tensor of the field

: 1,5
4 TS = F°Fo, + ;(R (F?° Fyo)
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i

3t Fuaser = 5 35 (3 F Pt (84)
in which F#is the total field defined by (82). From (84) we get:
Ve S @v) -

— lim 4C~\/‘< n.{[EXH] — Z [Ei XH,’,M]}) dz (85)

2y 4T i

z

F; being the force acting on the i-th particle of the system. As
in the cases in which the charges create retarded, advanced or atta-
ched fields, in general there are no difficulties arising from the con-
servation of energy because the surface integral in (85) can be made
nihil, in average or exactly, by imposing time boundary conditions,
or even no condition at all, as in the case of stationary motions.

19. In the discussion of the three types of motions of charged
particles many assumptions were made, now we will present a ge-
neral formulation of the principles which puts more clearly in evi-
dence the relations between all the particular hypothesis.

In order to formulate the general principles of the theory of
point charges it is convenient to combine the ideas of action at a
distance and action through the field, as it was already done in
section 13 of Part I. We will assume the following principles:

I) The equations of motion of the fields and particles -are
given by the action principle:

AL =0 (86)

+ co

~Zm;€fd81'“‘
i eej\/‘fdx;p‘dleia __xj}{xlv va})ds,dS,
) ifj ¥
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+

€; dxl
—Z /\——A,-adp.d& 16fFr ch ZF;az ,,azpa] dr dt (87)

in which F® is

Fw = 2 Flit 2 Fitu+ Fit (88)

and the potentials satisfy the supplementary conditions:

a-’q‘;l,.-al =0 a/All:‘,‘rad — ) aAlitav
ox* . oxt ST (89)

II) The element of world line of a particle ds; caﬁ be positive
or negative: ;

ds; = + Ydxt* dx;p - (90)

III) The attached field of a point éharge e; is defined by the
potentials A a

dx
A?,’at (x) = eif"’i‘ 5({.1', —x;} {xp_xr P}>dst (91)

V) The radiated field of a particle is either nihil or defined
by the potentials Al

& ~+oo
dx}’ b
Ag.rad (x) = (f_f) i d‘i‘ 6({xv — X }{xv“xi,v ; ) dSi. (92)

V) In states in which the radiated fields vanish they vanish
for all the particles and there is no field of incoming waves F,‘ﬁav
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VI) In states of motion with a non vanishing radiation field
the accelerations of the particles vanish for s; = — « and their
radiation fields tend to zero when s; = + .

The action principle (86)-(87) generalizes (72) of Part I by
allowing for states of negative kinetic energy and taking the broader
definition of the radiated field contained in the IV principle. This
definition of the radiated field includes the two.particular ones of
the non—sta.tionary motions of particles and anti-particles and
the vanishing radiated field of the stationary motions.

Therefore the action principle (86)-(87) is a generalization of the
principle (72) of Part I, including all kinds of motions considered
in the preceding parts of this paper: -

a) The non stationary motions of particles and anti-particles
correspond to the two possible signs of the ds; allowed
by principle II.

b). The étationa'ry motions correspond to the vanishing radia-
ted fields of principle 1V.

Principle VI contains the two time boundary conditions which .
determine the solutions of the equations of motion and eliminate
the diverging acceleration energies and energy fluxes at infinity in
non-stationary motions.

Since we are adopting the conception of: actions at a distance
the actual field is the total radiation field. The Fi% are to be con-
sidered as functions of the particles world-lines, not as quantities
to be determined by the differential equations resulting from the
action principle (87). When we use the expression attached field
we consider it only an abreviated way to say that the direct actions
between the particles have the form of Lorentz forces arising from
the attached fields.

To the six principles we may add a seventh one:

VII) The stress tensors of the total radiation field and th
matter are respectively j
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s Toglt = Fo Fpy 4 ' 8 Fo2F

N i 1 \
Z Fl at J al; 0y 4 (Z Fl at F’,a{;pc) (93)
i,/ LJ /
dx. dx;,y ds;
477 Tparl Vites 4” Z m;c dS, d 5( ) dt

[N E

+ZZ[ lalFﬂlPV 5( lal a{pc):' (9-1—)

Formula (93) is a generalization of (67) of Part I including
all types of motions of particles and anti-particles, the stress tensor
(93) vanishes in the case of stationary motions; in (94) the stress
tensor of the attached fields is added to the kinetic stress tensor
of the particles. Adding the two stress tensors we get the total
stress tensor: ' ’

Ydx.y ds;

4 TS = 4n 51)71cd a5 5(r_r,-)d

TIRve Byt ; 84 (F#° Foo)

N pee e \ £5 \
2, Fia Fiatoy oy — B o
p /

% i AT (95)

20. The action principle (86) is of the Schwarzschild type as
(72) of Part I, we can take instead a principle of the same kind as
(55) of Part I, in which both the field components and potentials
are taken as independent variables, an action principle leading to
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both sets of Maxwell equations. By making some partial integra-
tions and neglecting boundary integrals we can go over from (86) to:

A L¥=0 96)

dx M dx; . ; i
Z = ff ds; é,u ‘3("“ = afj {aiy—x}) dsids;

l'tj

el dxl 1 ) .
il Z ; rad,udsi + ]BW\/[FPG ch = Z Fip,it F,J',alpc] drdt
+o 'y
I dFes Ll oF;a
7 4;ﬂ/‘9 o~ St e e o
iJ

The action principle (86) is analogous to the form of the Ha-
milton principle of non-relativistic dynamics which leads to the
equations of Lagrange by variating the coordinates and not consi-
dering the velocities as independent quantities: the action principle
' (96)-(97) is analogous to the form of the Hamilton principle in which
independent variations are given to both the coordinates and the
conjugated momenta, a form of the action principle which leads
directly to the first order Hamilton equations. ’

It is worthwhile toremark that the action principle (96) leads
to both sets of Maxwell equations and there is no need of supple-
mentary conditions of the Lorentz type.
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APENDIX

In sections 5 and 7 we discussed the conservation of energy in
stationary motions from two different point of views, introducing
the functional E,. and the'energy Gj. The comparison with non
relativistic dynamics shows that E,, is analogous to the time
integral of the potential energy of the system of particles; equation
(35) shows that Gf can be considered as analogous to a potential
energy, hence E,,; must be analogous to the time integral of Gy, at
least in the average. Indeed, we get from equation (24) )

m; A\/ 2 AE. ATEL
= Bl = i
Zf 5' Z Ax(s;) Z ¢ Axi(t) @

From (35) and (98) it results that

dGj ' > AEum

dim 5 Axf—'(t) (99)

the bars representing time mean values, because the time integral of
the surface integral in the right-hand side of (35) vanishes accor-
ding to (53). If we consider E,,; as a functional of the time t we

may write:

A Epot

100)
Axi(t) (i

A E,,a[ Z
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But we have alscg
-+

dGii v A ! :

RO YA Gy dt (101)

—Q

considering | G dt a functional of the fields and of t, so that

T
A AVERS:
2l Godt:__i"_
o [t At

— Q0

(102)

This equation puts clearly in evidence in which sense E,,; may
be considered as an analogon of the time integral of G;.

Resumo

Este trabalho éuma continuagdo daanélise dos movimentos de
um sistema de cargas puntiformes, iniciada no fasciculo precedente
desta revista; discutem-se os estados de movimento sem irradiagédo e
os com energia cinética negativa. Mostra-se que € necessario admitir
que, em movimentos nao estacionarios com energia cinética negativa,
as particulas geram campos avangados. Toda a teoria dos movimentos
com energia cinética negativa podé ser apresentada de uma maneira
satisfatéria, admitindo-se que em tais movimentos o tempo proprio
do corpusculo esté orientado em sentido oposto ao do observador.

[nvestiga-se o comportamento ao contorno dos campos retar-
dado, avancado e semi-retardado — semi-avangado e da-se uma for-
mulagdo geral e unificada dos principios da teoria.

Department of Physics,
Faculdade de Filosofia, University of S. Paulo
S. Paulo, Brazil,
April 12, 1945.
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