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INVESTIGATION INTO THE HIGHER MOMENTS OF A NUCLEON
CASCADE.

By L. JANOSSY axp H. MESSEL.
(Dublin Institute for Advanced Studies.)
[Read 13 NovEMBER, 1950. Published 29 May, 1951.]

§1. In a previous publication (1) by one of us (H. M.) the fluctuation of a
nucleon cascade in homogeneous nuclear matter was considered. Analytical
expressions for average numbers and the mean square deviation were given,
as well as numerical results which showed that the mean square deviation
in the case of a nucleon cascade in homogeneous nuclear matter was very
similar to that found previously by Jénossy and Messel (2) for the electron-
photon cascade. In the present paper we generalise the procedure so as to
obtain moments of a cascade which develops not in a single nucleus but in
several nuclei. The problem of the traversal through a single nucleus is
important for the analysis of stars in emulsions. The problem of a finite
absorber is of importance for the interpretation of counter or cloud chamber
experiments and also for the theory of the development of large nucleon
showers in the air.

The first moment, i.e., the average number of particles in a cascade
developing in a finite absorber was investigated by Jénossy (3). The treat-
ment of the higher moments is more complicated and will be dealt with in
the present paper. The problem can be approached starting with a
generalisation of the G-equation given by Jénossy (4) and used by Messel
in (1).

§2. In order to obtain a G-equation for a nucleon cascade passing through
a finite absorber we regard the traversals through nuclei as single events
transforming an incident nucleon into a group of several nucleons.

Write @ for the total cross-section of a nucleus. The probability of a
collision along a path d 6 is then

add =N&dob 1)

where N is the number of nuclei per gram of absorber and 6§ is the path in
mass equivalent. We shall chose the unit of 6 so as to make

a=1 : (2)
PROC. R.LA., VOL. 54, SECT. A. [34]
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We write ¢, (e1, €3 . . . €,) d e . . . de, for the probability that a primary
of energy FE, hitting a nucleus should give rise to v nucleons coming out
of the nucleus the latter having energies in the respective intervals

GiEo,(Ei—""dei)Eo i=1,2.....:.v
¢, (el . .. ¢€) is assumed to be symmetric in its variables and
1 1 :
1
ay=—l[....[¢v(el...ev)del...dev (3)
4 :
0 0

is the total probability for a collision leading to v particles. The probabilities
should be normalized thus

D A | (4)

ay = 0 as we assume that collisions always lead to the splitting up of energy
but never to the actual loss of a particle. We shall also use the definitions

1 1
95,,,,,(61,...6”) = (n!fv!) J ¢”+n(€1,...en,en+1,...ey+n)
0 0 d€n+1...div+n
in particular
¢n,o(€1 coo§) = Pl €,) (5)
and : s
oy (€1, . o) = X (35 w(Glaca & G (6)
v=20
Finally we introduce the Mellin transform of the a, (¢, .. .¢,) as follows
1 1

1
b, (81,8 ...8,) = = [

J &l...efna,(q...¢)de ... .de, (7)
0 0
We shall give explicit expressions for the quantities thus defined in §4 and
§5.

The cascade in an absorber can be described by a function = (n, €, 6).
This function gives the probability that at a depth 6 there should be n
particles with energies exceeding e B, apart from any number of particles
with lower energies. ”

It is convenient to introduce a generating function
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o0

Gu, e, 0) = X wae 0 (8)
v=20
Because of normalization we have
G(,e 0 =1 .
1 < 0) PR
We shall be interested in the first and second moments of the distribution.
Namely . '
- £ 0G =
N, 0) = (@)m 3 (10)
and
T 0 (8261') 1 11
e, 0) T u=1_—n(n— ) ~(11)

§3. The G-equation.

The probability that a primary travels a distance §' without a collision
is e~ % as we have normalized the collision probability suitably. The prob-
ability that the primary should suffer a collision in the interval d 6" leading

to » nucleons in intervals de; . . . de, is thus
e~ dd ¢, (e; . . . €) de . . . de
The nucleons with energies ¢; . . . ¢, can be regarded as primaries of new

cascades and the probability that the secondary cascades should give rise
in the end to a cascade containing » particles with energies > e K, is

PN € e

-6 ’ a _p -
n1+n2+.”nv=ne 7 7r(n1,€1,0 0") m (ny, 52,9 M) o'oo o
m (n, , ] ,0-0) ¢ (e ...¢)de...de,.
€

Multiplying the above equation by

wt = 1t g,
and summing over n = 0, 1 ... we obtain on the right-hand side a préduce
of v @ functions. Integrating over ¢’ from 0 to § and also over all possible
intermediate values of the ¢ we find eventually

0 1 1 o0
: 1
Gl e, 0 — j e dp’ I S s ) el e G )
J v=1 ! € €,
0 0 0

¢, (er...¢) deg...de .
§34%]
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The above equation can be transformed easily into a form similar to that
given in (1), namely,

1 1
8GT(Z»€), 2["'J,§15_i {GC—I e) GC:,())—G(E, o)}qby(el...e,,)
0 053 : dey . . . de,. (12)

We have omitted the variable » for simplicity. Differentiating (12) with
respect to w, we find for u = 1 with help of (6), (9) and (10)

1

+N«J>=jNG?waum&1 (13)

0

ON (e, 6)
00

The solution of (13) is obtained in the usual way by means of a Mellin
transformation (see also equ. (7) ).

8o+ 1% o
1 ds
e =8 o=v(8)0
WEG ) = J B s (14)
8p—1 o0

Similarly differentiatihg (12) twice with respect to w we find for v = 1
with help of (6), (9) and (11)

oT (e, 0) . . € :
w160 = [7(5,0)a @i

€1

1

y
0

The last term in (15) can be expressed with help of (14) as follows (éee (7))

[}

Sl

€ /€
N(e—l, 0> T 0) o (6, ) dey dey
(15)

o+t fH+1%w

s

€ € :
[Faceob B R r  | S
0

To—t® ty—1% o0

o —

dr dt
3 Y ¢ gm0y +v@®) by (r, t) rt X
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Apart from notation, equ. (15) is analogous to that for the second moment
in homogeneous nuclear matter. Thus the solution can be written out
immediately as

To+t® t,+17 w0 =

1 e+ p=0G@) +y®) _ -0 +1))
(@mi)? J f t oy -y -y
foptRr fon v bo(r, &) dr dt (18)

T (e, 6) =

T (e, 0) can thus be determined numerically by a double saddle point inte-
gration. 3

§4. It remains to determine the ¢, (¢ .. .¢,)’s and the quantities derived
thereof. For this purpose it is necessary to consider the processes in a single
nucleus in more detail. We consider functions

b, (15 o o€, ;@) dey ... de,
representing the differential probability that a primary should give rise to
exactly v primaries in specified intervals after traversing an amount a of
homogeneous nuclear matter. The connection with the ¢,’s is as follows :

D
= 2xdx
qu(el...ev)=f¢y(€1,..ey;x)ﬁ~. (19)
0
’ : 2wde o 2
D is the ngclear diameter ; e I8 the probability that the primary

travels a distance between x and z -+ da through the nucleus. In ref. (3)
it was shown that we may write

piler- .65 3) = a (.. e)e®1=e %=1, (20)
The a,’s can be determined from the following regression :—

a, () = 8 (1-¢)

1
: - € €\ de
v-1)a, (e €,) =J 2T (el et : e)w<— ; —)—2 (21)
l € € /€
o bt
v>2
where ¢ ... €, 5 = ¢, ...¢ omitting ¢ and ¢ and w (e, ¢,) is the

differential collision probability for a single nucleon — nucleon encounter.
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The v—fold Mellin transform of (21) can be written as follows. Put

1 1
Ll -[ e &le2eva (e...¢)de ...de, = T (s, 83...8)
14
0 0 55
] J Dl e oot deyldese TGNt Hi22)
00
W (0, 0) = 1
We have
Tl (8) = 1:
1
(8,580t e S — S 2T, 1(81,8...8 o, 8 + 8)W (5,8) (23)

k+1
shy.o..8 s =8 ..., omitting s, and s;,v > 2.

From the recursion (23) the 7”s can be determined step by step. The
expressions thus obtained become increasingly complicated with increasing
v. Fortunately, for our actual problem we do not need the complete expres-
sions but it is sufficient to determine 7' values which contain only one or two
s values different from zero. In fact generalising the procedure of §3 it can
be readily seen that the k-th moments of the distribution depend on 7”s
containing £ ‘s values different from zero. We thus introduce

35 (jt—{—v)!

v!

t

A e g0 ) Lo (8re. = 18 510" . . 250) (24)
in particular for £ = 0
tooy = T(0,0...0) and ¢,,0(5,...8) =n!T, (5, ...8,) (26)

From (23) and (25) we find

ty,, = 1 v=1,2... (26)

Introducing the ¢, , into (23) we find

W, (81 e 8,) + v

tn, v (81 Qa0 sn) = t*n, v (81 siele ‘Sn) i tn, v—-1 (81 Sn) ﬁ :I'_"—;_‘_’_Wl—h; (273’)
where ; t¥; . (8) = 0
1
ot R o (0 e Ty -kfl b1, (81 8Ty 8+ 8) W (sg, 8)
T

n>1 (27b)
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and

W3 (81 o0 0 G) = A2 = 1 (G Q=1 (27c)

(26), (27a, 27b, 27c) give a full recursion for the ty,,’s. Forn =1 we find

_ W) + v

tl,v e ORS10 e k
14

Since t; = 1 we have

(7*, (s) + )t _ (—I—W*l Ny e

14

To deal with » > 2 we find from (27) as the result of a simple manipulation

14
(m+ p-1)! (PV*n‘i‘V)'
by, v (81 - 8y) =M=20 ¥, u (W*, + w! o+ v -1)! (29)

~,

-n/2

(29) and (27b) provide a full recursion.
The first step gives

2w (31_s 83) (W*1 (81 + 82) + »)!

t*2v (817 6‘2) =

L)L W (e 8p)!
And thus
2W(sy, 8) (=)' "1 = W¥y(s5, 85) —Wi*)s; +s5) -1
t2,(81, 8) = {( > )}
We*(s1, 82) = Wa*(s1 + 85) - 1 Dl Vit A
(30)
The ¢, for k = 3, 4 ... can be determined in a similar way. It can be

shown by induction that ¢, can be expressed as a linear combination of
certain binomial coefficients
4
(v + k-1

§6. It remains to express the b, (s, ... s,) defined by (5), (6) and (7) in
terms of the ¢, , (s; ... s,). With help of (19) we have
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1
[ G o
0

1

1
s s,.J J%H_V(el...en_*_v,z)dsl...den‘
0 0

D 1
([ 2xdx 1
by (o1 - 8) = | sz...
0

expressing the 1nte<nals over the ¢n +, in terms of the ¢, ’s we have
further

(= e B e R LR (S 9x)
0

l g

D2

14

D

2adx

b‘)l (sl 3 0 'Sn) = J >
0

Thus for » = 1 we find with help of (28), and writing for short

W*i(s) = —a
and . f@) =2 J e My dx (33)
0
then by (s) = f(=D W*(s)) = f(D a,)
for n = 2,

.

= J(D(L = Ws(sy, 85) ) ) = f (D(= W¥i(s1 + 85) ) )
U R G G e

— IV (31, 82 f{-D as; + as } F f D asl + 82) (34)
@g1 + g2 -a 1_“32
where
1= W*y(sy, 82) = a5, + s,
for A0 fAQ)S>1-2/3x + A2f, .. ..

‘thus for D = a-> 0 we have

by (8)>a '
4 34
by (815 82) > 2a Wy (81, 8y) - )

Equ. (34a) shows that for small values of D the expressions (14) and (18)
approach the expressions found for homogeneous nuclear matter in ref. (3).
In order to facilitate computation we give in section 5 a resumé of formulae
appearing in (1) and in the present paper.
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§6.  Resumé of formulae for the development and ﬂzwtuatwn of @ nucleon cascade
v homogenous and inhomogeneous matter.

(@) Homogeneous Nuclear Matter.

The average number of nucleons with energies greater than efl, at a
depth @ collisions due to a primary nucleon of energy I, is glven by

S+t
N(e o) = f i (35)
2 m s
Sp—t 0
where e
a, = J ‘ (I=€5-¢€%) w (e, &) deg dey (36)
00 '

and w (&, €,) d e, de,is the cross section.

Considering a process in which a nucleon of energy E, loses energy and
also gives rise to a recoil nucleon, it is assumed that the probability for a
collision to occur is given hy

= (E1 E2> dB,dB, _

w(B, ; B, B,) dB, dB, = B gt oef (1-¢) de; de,
Lug Ly 0

(37)
We chose B = 2 y = 1 and o = 15.
The expression for the difference between the first and second moments of
a nucleon cascade was given in (1) as

7o+ 120 5420
b Fr s ' 1 i
T(, *) = n2—n2 = B*(r, r) — ‘ J AL
(6 ) = n2-m ( )(2m.)2 €
To—10  fo—300

dr dt

{exp - (@, + @)@ + exp—a,, 7} = = (38)
and :
T (e, @
1;25_ +7z = BE(rn) (39)
with A
B*(r, t) = RERAGRtE 1} 1 -—exp(a, +a-a,,) (40)
@y —Q—a 1 + exp (e, + a,-a, )z
and
0 ®
W (r J. [ e a0 (hy )k dey deats (41)
0 o
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(0) Inhomogeneous Matter.

The average numbers with energies greater than I, due to a primary
nucleon of energy #,, in this case at a depth 6 in ordinary matter is

8+t
1 ds
N (e, 0) = omi j . e Sexp-0g(Dya,) = (42)
80—7:03
with
s N 1-(1 4 ¢)et
g0 = a-f@) =1-2 "L 0 (43)

(We write D, for D appearing in (19)). D, is the diameter of a nucleus in
units as defined by (22), that is D, is the average number of collisions made
by a nucleon along the diameter of a nucleus. In order to determine D,
one may proceed as follows. Denote the range of nuclear forces by R, . Let

R, be the radius of a nucleus whose atomic weight is 4. When a nucleon .

traverses a nucleus along its diameter then it sweeps out a volume equal
to 27R2, R,. Hence

B2,
324 7

gives the number of collisions suffered by a nucleon along the nuclear
diameter. The radius of a nucleus is

Ry, = 137 x 10718 41/; cm.
Hence

D — Al By 44
= 1187 x 10-m (44)

For air D, was taken to be equal to 2-41. The depth 0 is actually 6 = On D,,

where 0 is the depth in g/ecm? and n @, is the reciprocal cross-section. The
expression corresponding to (38) for the mean square deviation is given
now as

7o+t  ty4i00

: -+
e S e J o exp-[g (D a,) +
To—1% bo—10
| dr dt
9(Dya)]0+expg(Dya )0 45)

and
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7 (e, 6) : .
T e C* (v, 7) (46)
with
2W(r,t) D, .g(a ., -9 (a + a)
C* (r,t) = = . riel cor - ©o
) lq,-+g—a,"a: f/(ar‘-;-c)—g(ar)_g(at) A
1 —exp {g(a,) + g (@) —g(@, )} 0 (47)
1 + exp{g (@) + g (@) -9 (@, )}0
where we have written ¢, = D, a,.

The integrals (42) and (46) were evaluated following the methods outlined
in Part I. Table I gives some of the numerical results, figures 1 to 4 the
graphs obtained from the calculation and from calculations carried out in
(1) Part I.
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TaBLE I.
4 ; |
r ay : ay | f(Dy a) S (D4 a;)
| |
|
| | |
0-1 — 07501744 2.2133847 | —2:6263486 | 14-5837199
02 . —0-5518336 17758575 | -1-5412526 | 79775800
03, —0-3912770 1-4507220 -0-9198872 | 4-8031072
0-4 - 0-2590895 1-2039510 ~0:5323304 | 31115834
0-5 —0-1486292 1-0131478 —0-2741840 | 2:1344480
|
0-6 —0-0551043 0-8631647 ~ 00931040 | 1-5325601
0-7 0-0250114 0-7435116 0-0394672 | 1-1313645
08 0-0943594 0-6467706 0-1304178 | 0-8771515
0-9 . 01549496 0-5675988 02173042 | 0-6910532
10 - 0-2083333 0-5020834 0-2793276 | 0-5562470
1.1 02557237 | 0-4473151 0-3297028 0-4560393
1-2 0-2980809 0-4011018 0-3713286 | 0-3798065
1-3 0-3361730 0-3617703 0-4062316 | 0-3206672
14 0-3706210 0-3280290 04358752 | 0-2739848
15 04019314 0-2988701 0-4613362 | 0-2365648
|
1-6 04305212 0-2734995 0-4834218 } 02061579
1-7 0-4567364 0-2512857 0-5027474 | 0-1811467
1-8 0-4808666 0-2317216 05197912 | 0-1603457
1-9 0-5031553 0-2143975 0-5349272 0-1428744
2:0 0-5238096 *0-1989796 05484548 | 0-1280661
: |
2.1 0-5430056 0-1851932 | 0-5606124 | 0-1154129
2.9 0-5608950 0-1728121 | 0-5715958 | 0-1045194
2:3 0-5776085 01616474 | 0-5815646 -~ | 4 0-0950766
2.4 0-5932597 01515412 | 05906514 | 0-0868394
25 0-6079476 0-1423611 . 0-5989662 | 00796126
2:6 0-6217590 0-1339944 0-6066020 0-0732381
2.7 0-6347704 01263451 0-6136378 00675872
2.8 0-6470492 0-1193319 | 0-6201402 0-0625551
2.9 0-6586555 _ 0-1128840 | 0-6261666 | 0-0580546
3.0 0-6696428 01069410 | 0-6317664 | 00540139
3:1 0-6800588 0-1014500 ; * 0-6869824 0-0503722
3:2 0-6899463 0-0963653 | 0-6418524 0-0470787
3.3 0:6993441 0-0916468 0-6464086 0-0440906
34 0-7082868 0-0872598 | 0-6506796 | 0-0413715
3.5 07168061 0-0831728 { 0-6546910 1 0-0388897
| : 1
3.6 0-7249305 00793588 | 0-6584646 | 0-0366188
. 8.7 07326862 00757935 | 0-6620206 | 0-0345355
3.8 0-7400968 0-0724556 | 06653772 0-0326196
3.9 0-7471842 00693255 | 0-6685496 | 0-0308537
4.0 07539683 0-0663863 | 0-6715524 i 00292227
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Fie. 1.

Plot of the logarithm of the average number of particles with energies greater than e E,,
dus to an incident primary nucleon of energy E, ; against the depth in g/cm? of air. The curves
marked “ H > are for homogeneous nuclear matter, the others for inhomogeneous matter, in this
case air. The value of log € is attached to each pair of curves. The top scale gives the number
of nucleon collisions corresponding to the various depths.
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The * deviation” ———— for homogeneous nuclear matter (curves marked “H '), and for
N2+ N inhomogeneous matter, in this case air, plotted for constant values
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6. Discussion of the results.

In fig. 1 we have plotted the average numbers of particles of cascades
developing in a finite absorber, i.c. in inhomogeneous nuclear matter. For
the sake of comparison the curves for an equivalent amount of homogeneous
nuclear matter are also given.

We note that both the position and the height of the maximum for
homogeneous and inhomogeneous matter coincide. While the physical reason
for this coincidence cannot be seen readily mathematically it can be under-
stood as follows. Evaluating the complex integral for the average numbers
with the saddle point method the maximum of the transition curves in the
two cases are attained for s ~ 0-65. The saddle point conditions at the
maximum are, respectively, :

o =0 (homogeneous case)
g(Dya) =0 (inhomogeneous case)
Since g(0) == 0 the two conditions lead to the same values of s, Further-

more we find

’ e ’ ’
@y max, — ¢ (0) @ DA o max.

and with

9" (0) = % = % DA Omax.

But in our units £ # is the average amount of nuclear matter traversed
in an absorber 0 (see e.g. ref. 4). We see, therefore, that the average amount
of nuclear matter % 6, . traversed at the maximum is equal to the actual
 nax, Path traversed at the maximum in homogeneous nuclear matter.
(¢ is now in units of nuclear diameter). Thus in the two cases the maxima
are reached at equivalent thicknesses. The expressions for average number
of particles at the maximum differ only in the expression for the width of
the saddle, therefore, the actual numbers are not very different.

In the case of inhomogeneous matter the average number of particles
found after the maximum is much longer than the corresponding numbers
of particles in homogeneous nuclear matter. This behaviour can be under-
stood easily ; in the case of inhomogeneous matter the ‘most important
contribution to the intensity arises from particles which have traversed
less than average nuclear path. This circumstance has already been pointed
out by Heitler and Janossy (5).

In figs. 2, 3 and 4 we have plotted the second moments of the distribution.
In fig. 3 we have also given the curves for homogeneous matter in order
that the two cases may be compared. It is seen that the standard deviations
in the case of inhomogeneous matter exceed those for homogeneous matter,
at any rate in the region before the maximum. This point is further brought

PROC. R.IA., VOL. b4, SECT. A. [35]
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out in fiz. 4 where the deviations are plotted against the logarithm of the
average number for a fixed energy. The larger fluctuation is connected
with the reduction of the number of independent events,

The general point of interest arising from the above is the extreme
similarity of the result we obtain for the first and second moments of the
nucleon and electron-photon cascade. We believe that this is not in any way
accidental and that any cascade process with a homogeneous type of cross
section and a multiplication ratio of 2, will lead to almost identical results.
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