Phys. Ren. 20 public 1/4/49

EXCHANGE PHENOMENA OF THE NUCLEONS THAT GENERATE PENETRATING SHOWERS.

H.A. Meyer and G. Schwachheim.

Departamento de Fisica Universidade de São Paulo São Paulo, Brasil.

Recently G. Cocconi performed measurements on the absorption of ionizing PSPR * (which are believed to be protons) in Pb, Fe, C, and air (1). He finds that this absorption is not exponential in the condensed absorbers and that the mean range of the ionizing PSPR in the atmosphere increases with the lead thickness above the penetrating shower detector. These results are not compatible with an exponential absorption of the PSPR which was verified by Tinlot and Gregory (2) in Pb and Fe and by Wataghin (3) and Tinlot (4) in the atmosphere.

The fundamental difference between the experimental arrangement of Cocconi and those of the other authors, is that a proton of the PSPR appears as absorbed in any material situated in position Σ (fig. 1 of Cocconi's paper (1)), not only when it generates a penetrating shower, but also when it emerges from Σ in the form of a neutron.

Let us discuss Cocconi's results by taking into account the phenomenon described above. We shall make the

^{*} We use the abbreviation PSPR for Penetrating Shower Producing Radiation.

following hypothesis: 1) The absorption of nucleons through production of penetrating showers is exponential in all materials and is independent of their charge as well as of the altitude of the point of observation. 2) The probability of a transformation of a proton into a neutron is equal to that of the reverse process. 3) At Echo Lake (708 gr.cm⁻²) the number of protons is already equal to the number of neutrons in the PSPR. Indeed if this were not so, Cocconi should have found a mean range for the ionizing PSPR in the atmosphere (without any absorber above the detector) smaller than the mean range of the total PSPR determined by Wataghin and Tinlot. Thus varying the absorber thickness at position Z in Cocconi's experiments (1) and the absorber thickness in the arrangement of Tinlot and Gregory (2), it is only necessary to consider the exponential absorption due to the production of penetrating showers.

Following this interpretation one deduces easily from Cocconi's measurements the values of the mean range λ for the XXX production of penetrating showers in different absorbers:

$$\lambda_{Pb} = 345 \pm 37 \text{ gr.cm}^{-2}$$
 $\lambda_{Fa} = 240 \pm 27 \text{ m}$
 $\lambda_{c} = 100 \pm 12 \text{ m}$
 $\lambda_{air} = 113 \pm 7 \text{ m}$

in good agreement with the values given by other workers (2,3,4). A short calculation yields for the mean range M for charge exchange the values

$$M_{\rm Fe} = 247 \pm 61 \, \text{gr.cm}^{-2}$$
 $M_{\rm Fe} = 300 \pm 121 \, \text{m}$

at Echo Lake (708 gr.cm⁻²). For Mc we obtain a larger value than the preceding ones, but the statistical errors

are too important to allow a precise determination. However this result is not surprising since charge exchange and showers production are competitive processes. It is then reasonable to expect that M should increase if λ decreases. At Ithaca (1007 gr.cm⁻²) M is found to be several times larger, but a precise determination is impossible.

We see that the exchange properties of the PSPR explain Cocconi's results consistently with the results of other authors. On the other hand we wish to point out that the energy loss of the protons by ionization has been neglected, and this might not be very accurate in the case of the rather low energy events recorded by Cocconi (1) and by Tinlot and Gregory (2). However we think that this factor could at most alter somewhat the numerical values of the mean ranges (5).

- (1) G. Cocconi, Phys.Rev. 75, 1074, 1949. We are indebted to Professor Cocconi for having communicated to us his results before publication.
- (2) J.Tinlot and B.Gregory, Phys. Rev. 75, 519, 1949.
- (3) G. Wataghin, Phys. Rev. 71, 453, 1947.
- (4) J. Tinlot, Phys.Rev. 74, 1197, 1948.
- (5) A more complete account will appear in the Anais da Acad. Bras.de Cienc.

São Paulo, May 18, 1949.

para Coccori - Phys. Rev. devoluid.

EXCHANGE PHENOMENA OF THE NUCLEONS THAT GENERATE PENETRATING SHOWERS:

H.A. Meyer and G. Schwachheim

Departamento de Fisica Faculdade de Filosofia, Ciencias e Letras Universidade de São Paulo São Paulo, Brasil.

tod

It is generally admitted that the particles constituting the PSPR * are energetic nucleons. The nucleons are believed to interact by means of exchange-forces. As a consequence, in a proton-neutron scattering, the nucleons may exchange their charges. The same should happen if the proton (1) collides with a nucleus. This phenomenon has already been confirmed by neutron-proton scattering experiments made with the 184" cyclotron at Berkeley. We should expect a similar exchange with the nucleons of cosmic radiation, in particular with the PSPR which consist at sea-level of protons and neutrons.

On the basis of these remarks, we shall discuss some recent experiments on ionizing PSPR by Cocconi to whom we are

^{*} We use the abbreviations PS for Penetrating Shower and PSPR for Penetrating Shower-Producing Radiation.

The fundamental difference between the experimental arrangement of Coccnni and those of all the other authors, is that the PSPR must discharge one counter of each tray A and E (see figure 1 $^{(4)}$ in Cocconi's paper), before giving rise to a PS detected by coincidences of the trays B, C, and D. In Cocconi's arrangement a proton of the PSPR appears as absorbed in any material situated in position Σ , not only when it gives rise to a PS but also when it emerges from Σ in the form of a neutron, even if this neutron is itself able to generate a PS. In Σ it is only necessary to consider the absorption due to the production of PS, if we admit, in a reasonable approximation, that the ratio of ionizing to non-ionizing particles is unaltered by the absorber Σ (see below).

We shall try to discuss Cocconi's results taking into account the phenomenon described above. We shall make the following hypotheses:

a) The absorption of nucleons by the production of PS is an exponential one in all materials and is independent of their charge.

- b) The probability of a transformation of a proton into a neutron is equal to that of the reverse process.
- c) At 708 gr.cm² of barometric pressure (EchoLake), the number of protons is already equal to the number of neutrons in the PSPR. Hypothesis a) is trustworthy since it has been verified by Tinlot for the absorption of the PSPR in the atmosphere; the second part of this hypothese is seems reasonable, since we can neglect the Coulomb-forces at the involved energies. Hypothesis b) follows from the symmetry of the two processes. Hypothesis c) is verified by experiment. In fact, if the equilibrium between the ionizing and the non-ionizing particles of the PSPR were not established at 708 gr.cm², Cocconi should have found a mean range for the ionizing PSPR in the atmosphere (without any absorber above the counters), smaller than the mean range for the total PSPR found by Tinlot and others.

Let us suppose that a beam of nucleons incides normally upon an absorber. We call P(0) and N(0) the intensities of protons and neutrons inciding on the absorber, and P(x) and N(x) the corresponding intensities at the absorber thickness x. We find readily

that:
$$P(x) = \left[\frac{P(0) + N(0)}{2} + \frac{P(0) - N(0)}{2} e^{-2x/h}\right] e^{-x/h}$$

$$N(x) = \left[\frac{P(0) + N(0)}{2} - \frac{P(0) - N(0)}{2} e^{-2x/h}\right] e^{-x/h}$$
(1)

where we call M the mean range of a nucleon for a charge exchange and λ the mean range for an absorption by means of generation of PS. In Cocconi's experiments equations (1) are somewhat simplified since we have N(0) = 0 because only protons inciding on the counter-tray Δ , above the absorber Σ , can be detected.

The mean range λ for the PS-production can be determined by the measurements with different thicknesses of the absorber Σ maintaining the absorber thickness at Σ constant. In fact, by hypothesis c) and by equations (1), we see that in Σ , P(x') = N(x'), where x' is the thickness of the absorber Σ . Then the absorption law in Σ is:

 $P(x') = P(0) e^{-x'/\lambda}$

In this way we find at Echo Lake (708 gr.cm⁻²) with the measurements of 284 and 605 gr.cm of lead and with the measurements of iron and carbon

> λ_{Pb}= 337 ± 36 gr.cm λ_{Fe}= 240 ± 27 gr.cm λ_c=100 ± 12 gr.cm

With the same method we obtain at Ithaca (1007 gr.cm 2)

 $\lambda_{Pb} = 458 \pm 188 \text{ gr. cm}^{-2}$ $\lambda_{C} = 207 \pm 54 \text{ gr. cm}^{-2}$

Now, we assume that in a certain material λ is the same at different altitudes. Tinlot's experiments prove this argument for the absorption of the PSPR in the atmosphere and Cocconi's results with lead are consistent with it. However, the results with carbon show a slight discrepancy which might be due to an unfavourable fluctuation. We have the reasons to suppose that the at Ithaca at Ithaca the fluctuation of carbon should be foundating rate with 110 gr. cm of carbon should be foundating rate with 200 gr. cm of carbon should be foundating to the absorption by PS-production, we find that the best values are:

$$\lambda_{eb} = 345 \pm 37 \text{ gr.cm}^{-2}$$

 $\lambda_{ee} = 240 \pm 27 \text{ gr.cm}^{-2}$
 $\lambda_{c} = 100 \pm 12 \text{ gr.cm}^{-2}$.

Having thus determined the mean ranges for the PS-production by the ionizing PSPR in different materials, we shall calculate the mean range s for an exchange of charge. If the absorber is situated in position Σ , the absorption law will be given by formula (1) which allows to determine μ . We find at Echo Lake :

$$\mu_{Pb} = 247 \pm 61 \text{ gr.cm}^{-2}$$
 $\mu_{E} = 300 \pm 121 \text{ gr.cm}^{-2}$.

For μ_c we obtain a larger value than the preceding ones, but the statistical errors are too important in order to allow a precise determination. This result is not surprising, since charge exchange and PS-production are competive processes. It is then reasonable to expect, that μ should increase if λ decreases. In particular this should be the case XNXXXXXXXXX

At Ithaca we find that μ_{Pb} is several times larger than at Echo Lake, but we cannot determine its value accurately due to the statistical errors of the data.

The mean range μ thus obtained is only a sort of average value over the mean ranges of all the protons with different energies, but we can state that the protons have, in the mean, a larger mean range for charge exchange at 260 m than at 3260 m. We do not have much information about the charge exchange at high energies, but it is possible that we have an explanation of the phenomenon if the cross-section for the charge exchange varies rapidly with energy.

With the absorption (aw (1) for absorbers located at Σ the mean range for PS-production in the atmosphere is the same

* However the order of major hade of blue cook-section seems reasonable.

for different thicknesses of the absorber and has precisely the value (113 gr.cm⁻²) obtained by Cocconi without any absorber. This value is in fair agreement with the results obtained by other authors.

Summarising we see that the transformation of protons into neutrons explains the whole of Cocconi's results which become, in this way, consistent with results of other workers. This fact seems to be an experimental evidence for the exchange character of the nuclear forces at high energies (>10° eV).

(1) For details and references see H.A. Bethe and R.F. Bacher, Rev. of Mod. Phys. 8, 83, \$15, 1936

(2) J. Hadley, C. Leith, H. York, E. Kelly and C. Wiegand,

Phys.Rev. 73, 541, 1948.

(3) L. Janossy and G. D. Rochester, Phys. Rev. 64, 348, 1943
L. Janossy, "Cosmic Rays", Oxford Univ. Press, 1947, p. 356.

(4) G. Cocconi, "Some Properties of the Cosmic-Ray Tonizing

(4) G.Cocconi, "Some Properties of the Cosmic-Ray Ionizing Particles that generate Penetrating Showers", to be published in the Phys.Rev. 75.N.6.(1949)
(5) J.Tinlot, Phys.Rev. 74, 1197, 1948.

G. Wataylun P. R. 71, 453, 1942

\$\$ão Paulo, February the 7th, 1949.

(6) Tiulot.
(+) H.M --- Du

However we wish to print out that we neglected in the above discussions the laftuence of the energy loss of the purchase by loss of the energy loss of the energy loss of the energy but we do not think that our conclusions of example be appreciably influenced about he wodified, Indeed it can be shown that Coccour's results concurs by

Anaes Academia Bias Cirnois

EXCHANGE PHENOMENA OF THE NUCLEONS THAT GENERATE PENETRATING SHOWERS.

H.A. Meyer and G. Schwachheim.

Departamento de Fisica Faculdade de Filosofia, Ciencias e Letras Universidade de São Paulo São Paulo, Brasil.

It is generally admitted that the particles constituting the PSPR * are energetic nucleons. The nucleons are believed to interact by means of exchange forces. As a consequence, in a proton-neutron scattering, the nucleons may exchange their charges. The same should happen if the proton collides with a nucleus (1). This phenomenon has already been confirmed by neutron - proton scattering experiments made with the 184 " cyclotron at Berkeley (2). We should expect a similar behaviour with the nucleons of cosmic radiation, in particular with the PSPR which consists all sea level of protons and neutrons (3).

On the basis of these remarks, we shall discuss some recent experiments on ionizing PSPR by Cocconi (4) to

^{*} We use the abbreviations PS for Penetrating Shower and PSPR for Penetrating Shower - Producing Radiation.

whom we are deeply indebted for having communicated to us his results before publication. Cocconi's experiments consisted in measuring the absorption of the ionizing PSPR in various materials, such as lead, iron, carbon and air. He finds that the absorption is not an exponential one in the condensed absorbers. For the absorption in the atmosphere he finds the surprising result that the mean range of the ionizing PSPR increases with the lead thickness above the counters. This result is not compatible with an exponential absorption of the PSPR in the atmosphere, which was verified by Wataghin (5) and by Tinlot (6).

The fundamental difference between the experimental arrangement of Cocconi and those of all the other authors is that the PSPR must discharge one counter of each tray A and E (see figure 1 in Cocconi's paper (4)), before giving rise to a PS detected by coincidences of the trays B, C and D. In Cocconi's arrangement a proton of the PSPR appears as absorbed in any material situated in position Σ , not only when it gives rise to a PS but also when it emerges from Σ in the form of a neutron, even if this neutron is itself able to generate a PS. In Σ it is only necessary to consider the absorption due to the production of PS, if we admit, in a reasonable approximation, that the ratio of ionizing to non - ionizing particles is unaltered by the absorber Σ (see below).

We shall try to discuss Cocconi's results by taking into account the phenomenon described above. We shall make the following hypothesis: a) The absorption of nucleons through by the production of PS is an exponential one in all materials and is independent of their charge. b) The probability of a transformation of a proton into a neutron is equal to that of the reverse process. c) At 708 gr.cm⁻² of

barometric pressure (Echo Lake), the number of protons is already equal to the number of neutrons in the PSPR. Hypothesis a) is trustworthy since it has been verified in the particular case of the absorption of the PSPR in the atmosphere; the second part of this hypothesis seems reasonable, since we may neglect the Coulomb forces at the invoved energies. Hypothesis b) follows from the symmetry of the two processes. Hypothesis c) is verified by experiment. Indeed, if the equilibrium between the ionizing and the non - ionizing particles of the PSPR were not established at 708 gr.cm⁻², Cocconi should have found a mean range for the ionizing PSPR in the atmosphere (without any absorber above the counters), smaller than the mean range for the total PSPR found by Tinlot and others.

Let us suppose that a beam of fast nucleons is incident normally upon an absorber. We call P(o) and N(o) the intensities of protons and neutrons striking the absorber, and P(X) and N(X) the corresponding intensities at the absorber thickness X. We find readily that

×. We find readily that
$$R(x) = \frac{1}{2} \left\{ P(0) + N(0) + [P(0) - N(0)] e^{-2x/\mu} \right\} e^{-x/\lambda}$$

$$N(x) = \frac{1}{2} \left\{ P(0) + N(0) - [P(0) - N(0)] e^{-2x/\mu} \right\} e^{-x/\lambda}$$

where we call μ the mean range of a nucleon for a charge exchange and λ the mean range for an absorption by means of generation of PS. In Cocconi's experiments equations (1) are somewhat simplified since we have N(0) = 0 because only protons striking the counter tray Δ , above the absorber Σ can be detected.

The mean range λ for the PS - production may be determined by the measurements with different thicknesses of the absorber \sum' maintaining the absorber thickness at \sum constant. Indeed by hypothesis c) and by equations (1) we see that in \sum' , $\sum N(X')$, where \times' is the thick-

we see that in Σ' , P(x'), N(x'), where X' is the thickness of the absorber Σ' . Then the absorption law in Σ' is given by

P(x') = P10) e - x'/h

In this way we find at Echo Lake (708 gr.cm⁻²) with Cocconi's measurements of 284 and 605 gr.cm⁻² of lead and with the measurements of iron and carbon

 $\lambda_{pb} = 337 \pm 36 \text{ gr.cm}^{-2}$ $\lambda_{pc} = 240 \pm 27 \text{ gr.cm}^{-2}$ $\lambda_{c} = 100 \pm 12 \text{ gr.cm}^{-2}$

With the same method one obtains at Ithaca (1007 gr.cm⁻²)

 $\lambda_{\rm Pb} = 458 \pm 188 \, \text{gr.cm}^{-2}$ $\lambda_{\rm C} = 207 \pm 54 \, \text{gr.cm}^{-2}$

Now we assume that in any material λ is the same at different altitudes. Tinlot's experiments prove this assumption for the absorption of the PSPR in the atmosphere and Cocconi's results with lead are consistent with it. However, the results with carbon show a slight discrepancy which might be due to an unfavourable fluctuation. We have reasons to suppose that at Ithaca the counting rate with 110 gr.cm⁻² of carbon should lie somewhat lower. Summarising Cocconi's measurements of the mean ranges for the absorption by PS - production, we find that the best values are:

 $A_{E} = 345 \pm 37 \text{ gr.cm}^{-2}$ $A_{E} = 240 \pm 27 \text{ gr.cm}^{-2}$ $A_{C} = 100 \pm 12 \text{ gr.cm}^{-2}$

Having thus determined the mean ranges for the PS - production by the ionizing PSPR in different materials, we shall calculate the mean ranges for an exchange of charge. If the absorber is situated in position Z, the absorption law will be given by formula (1) which allows to determine. One finds at Echo Lake

Mpb := 247 ± 61 gr.cm⁻²
Mpc := 300 ± 121 gr.cm⁻²

For μ we obtain a larger value than the preceding ones, but the statistical errors are too important to allow a precise determination. This result is not surprising, since charge exchange and PS - production are competitive processes. It is then reasonable to expect, that μ should increase if λ decreases. In particular this should be the case with carbon.

At Ithaca one finds that his is several times larger than at Echo Lake, but we cannot determine its value accurately due to the statistical errors of the data.

The mean range A thus obtained is only a sort of average value over the mean ranges of all the protons with different energies, but we can state that the protons have, in the mean, a larger mean range for charge exchange at 260 m than at 3260 m of altitude. We do not have much information about the charge exchange at high energies, but it is possible that we have an explanation of the phenomenon if the cross section for charge exchange varies rapidly

with energy. However the order of magnitude of the cross section seems reasonable (1).

With the absorption law (1) for absorbers located at \sum the mean range for PS - production in the atmosphere is the same for different thicknesses of the absorber and has precisely the value (113 gr.cm⁻²) obtained by Cocconi without any absorber. This value is in fair agreement with the results obtained by other authors.

Summarising, we see that the transformation of protons into neutrons explains the whole of Cocconi's results which become, in this way, consistent with results of other workers. However we wish to point out that we neglected in the above discussions the aneggy loss of the protons by ionization. This might change the numerical values of the mean ranges but we do not think that our main comclusions should be modified. Indeed it can be shown that Cocconi's results cannot be explained on the basis of energy loss by ionization. Thus it seems that Cocconi's experiments may be interpreted as an indication for the exchange character of nuclear forces at very high energies.

(1) For details and references see H.A. Bethe and R.F. Bacher Rev. of Mod. Phys. 8, 83, \$15, 1936.

(2) J. Hadley, C. Leith, H. York, E. Kelly and C. Wiegand

Phys.Rev. 73, 541, 1948.

(3) L.Janossy and G.D.Rochester, Phys.Rev. 64, 348, 1943 L.Janossy, "Cosmic Rays", Oxford Univ. Press, 1947, p. 356.

(4) G.Cocconi, Phys. Rev. 75, nº 6, 1949.

(5) G.Wataghin, Phys. Rev. 71, 453, 1947.

(6) J.Tinlot, Phys. Rev. 74, 1197, 1948.

(7) H.A. Meyer, G. Schwachheim, A. Wataghin and G. Wataghin "On penetrating showers in cosmic radiation" Phys. Rev. to be published soon.

São Paulo, April 28, 1949.

Avendice

Neste apendice estão expostos os métodos estatísticos usados para a determinação da curva de absorção das particulas que atingem o contador E na experiencia III e em particular para a determinação do c.l.m. para absorção das partículas produzidas localmente. Vamos mostrar como nos utilizamos, do fato que simultaneamente com as quíntuplas foram medidas quadruplas, tanto para a determinação desse c.l.m. como para melhorar a precisão com que se pode conhecer as quintuplas.

A probabilidade do contador E ser atingido pelos PS selecionados pelos telescopios (com gazolina) depende da espessura de chumbo x colocada em cima desse mesmo contador. Supomos que esta probabilidade P (x) segue uma lei do tipo:

$$P(x) = a + b e^{x}$$
 (1)

onde a, b, c, são parametros a ser determinados e c = e 1/L. L, 6
o c.l.m. procurado, porque P(x) é proporcional à frequencia de quintuplas com gazolina. Queremos observar que da formula (1) obtem-se
o c.l.m. corrêto somente na aproximação que o contador E seja atintido por uma única particula do E.P. selecionado pelos telescopios.
Damos a P(x) os melhorês valores medidos (vide tabela abaixo).

, RE	P(x)	
0	N5(0)/N4 0 =	0,595 ± 0,028
5	115(5)/1145=	0,612 ± 0,028
15	115 (15)/11/15=	0,545 ± 0,029
20 .	115(20)/11/120=	0,554 ± 0,027
00	b5/\$4 =	0,422 \$ 0,029

onde N₅(x) e N₁(x) são os numeros de coincidencias quintuplas e quadruplas respectivamente medidas simultaneamente com uma dada esposabilidade de P(co) sura de chumbo x (com gasolina). Para x = con prob será b₅/f_{li} na hipotese feita que a contagem de fundo de quintuplas b₅, e que a frequencia total de quadruplas com gazolina f_{li} não dependem de x.

 $N_5(x)/N_{l_1}(x)$ é a frequencia de uma variavel estatística que segue a lei binomial com erro relativo $\sqrt{1/N_5(x)} - 1/N_{l_1}(x)$. O erro de B_5/f_{l_1} será calculado porém como erro no quociente de variáveis independentes.

Calcula-se depois com o método dos minimos quadrados ponderados com aproximações sucessivas as constantes a, b, c, (e portanto L) e os seus erros.

Vamos agora mostrar como se pode utilizar as quadruplas para melhorar a precisão com que se pode conhecer as quintuplas, porque em muitos casos isso é de grande interesse. A frequencia de quintuplas $f_5(x)$ pode ser considerada como produto de dois fatores independentes, a probabilidade P(x) e a frequencia total de quadruplas f_{\downarrow} $N_5(x)/N_{\downarrow}(x)$ é a melhor medida de P(x). Ao produto $N_5(x)/N_{\downarrow}(x)$ chamamos de frequencia de quintuplas corrigida. Notamos que o erro relativo nas quintuplas corrigidas é $1/N_5(x) - 1/N_{\downarrow}(x) + 1/N_{\downarrow}$ $(N_{\downarrow}$ é o numero total de quadruplas medidas), erro esse menor do que o erro nas quintuplas medidas diretamente.

DATA IN POISSON DISTRIBUTIONS

The data are n whole numbers, y, drawn respectively from n distributions of the type

where \u03c4 , the mean or expected value of y can be expressed as

h being a constant-say the number of hours during which the events were counted- and p a rate - rate per hour, if h represent hours.

To simplify the notation, we shall not attach suffices 1, 2,...n to y, μ , ρ , etc but will use Σ only to indicate summation over the n observations, etc. Thus Σ y will denote the sum of the n observed whole numbers.

The rate, ρ , is a function of k unknown parameters, denoted collectively by θ and individually by θ , θ , ... θ_k , and of one or more exactly observable quantities x_1, x_2 etc. Thus, if ρ is the rate per hour of particles counted after passing through x cms of lead, we may wish to assume that

$$\rho = \exp(\alpha + \beta x)$$

Here ρ is a function of two parameters, α and β , (β is essentially negative) and of one exactly observable quantity x, the thickness of lead.

The problem is to use the data to find efficient estimates of the parameters (i.e. estimates with the highest possible precision).

General Solution

To determine efficient estimates, we may use the method of maximal likelihood. The logarithm of the joint probability of the n observed values, y is

L = Zylog p - Zhp + terms not containing the parameters

The maximal likelihood estimates, $t(t_1,t_2,\dots t_k)$ are those which maximise the logarithm of the joint probability and are therefore the roots of k simultaneous equations of the type

It will be convenient to denote the estimates of Θ by the corresponding latin letter t and the values of μ and ρ (when Θ is replaced by t) by m and r. We shall also write

$$m_{1} = \frac{\partial \mu}{\partial \theta_{i}} \quad \text{for } \theta = t$$
etc.

and
$$r_{1} = \frac{\partial \rho}{\partial \theta_{i}} \quad \text{for } \theta = t$$
etc.

With these conventions of notation, we have to satisfy the k equations of the type

$$\sum yr_1/r - \sum hr_1 = 0$$

Preliminary estimates, t, can be found by any convenient method - often by adjusting a free-hand graph to the data. These preliminary estimates are inserted in the left-hand-sides of the above equations ehich will produce, instead of zero, small quanties ϵ_1 , ϵ_2 , ... ϵ_k .

The information matrix is defined as a k x k symmetrical matrix, with terms of the type

Substituting he for he and the preliminary estimates for the parameters we find the estimated information matrix

$$\{I\} = \begin{cases} \sum hr_i^2/r & \sum hr_ir_2/r & \sum hr_ir_3/r & \dots \\ \sum hr_ir_i/r & \sum hr_i^2/r & \sum hr_ir_3/r & \dots \\ \dots & \dots & \dots \end{cases}$$

The reciprocal of this matrix,

$$\{V\} = \frac{1}{\{I\}} = \begin{cases} V_{11} & V_{12} & V_{13} \\ V_{12} & V_{22} & V_{23} \\ V_{13} & V_{23} & V_{33} \end{cases}$$

supplies estimates of the variances and covariances of the errors of the estimates.

We may now improve on the preliminary estimates by calculating t, + St, , t2 + St2 etc, where

$$\begin{array}{lll} \mathcal{S}t_1 &=& V_{i1}\epsilon_1 + V_{i2}\epsilon_2 + \ldots + V_{iR}\epsilon_R \\ \mathcal{S}t_2 &=& V_{i2}\epsilon_2 + V_{22}\epsilon_2 + \ldots + V_{2R}\epsilon_R \\ \text{etc.} \end{array}$$

Readers familiar with matrix notation will recognise that these call chlations can be expressed more simply as

The process may be repeated, starting afresh from the improved estimates, and will converge on the maximal likelihood solutions. It is however unnecessary to apply the process more than once, since the results of a single improvement are already efficient estimates, or, in other words, they diverge from the maximal likelihood estimates by quantities which are negligible in comparison with the standard errors.

Test of Agreement with Hypothesis

Using the improved estimates we calculate the estimated rates, ? , and hence the expected numbers, m = hr. Then

with degrees of freedom . = n-k

may be used for testing the agreement between observations and hypothesis.

Exponential Rate tending to Zero.

The hypothesis is that

$$P = \exp(\alpha + \beta x)$$

Hence

$$P = \exp(\alpha + \beta x)$$

$$P_{\alpha} = \partial \rho / \partial \alpha = \rho$$

$$P_{\beta} = \partial \rho / \partial \beta = x \rho$$

The equations of maximal likelihood are accordingly

$$\Sigma y - \Sigma m = 0$$

 $\Sigma xy - \Sigma xm = 0$

and the information matrix is

$$\{I\} = \left\{ \begin{array}{ll} \sum_{m} \sum$$

Example of Rate tending exponentially to Zero

In order to avoid negative values of the exponential we shall take the rate in the form

$$\rho = \frac{\exp(\alpha + \beta x)}{10}$$

The x may be taken as number of cms of lead multiplied by 0,4.

ems.	X	h (hours)	(number)	y /h	log(10y/h)
0	0	232	242	1,043	2,345
2,5	1	209	152	0,727	1,984
5	2	411	, 241	0,586	1,768
10	4	240	96	0,400	1,386

From a graph of log(lOy/h) against x we obtain the preliminary esti-

$$b = -0,25$$

Hence

$$r = {\exp(2,3 - 0,25x)}/10$$

X.	2,3 - 0,25x	2	h	m (=hr)
0	2,3	0,99742	232	231,40
1	2,05	0,77679	209	162,35
2	1,8	0,60496	411	248,64
4	1,3	0,36693	240	88,063

The maximal likelihood equations yield

$$\Sigma_y - \Sigma_m = 731 - 730,45 = +0,55 = \epsilon_a$$

The estimated information matrix is

The covariance matrix and the discrepancies are

The adjustments to be made to the preliminary estimates are found by multiplying the columns of the covariance matrix by the column on the right, i.e.

$$\delta a = (0,003017)(0,55) + (+0,001190)(6,12) = -0,0056$$

 $(-0,001190)(0,55) + (0,000859)(6,12) = +0,0046$

Hence the improved estimates are

$$a + 3a = 2,3 - 0,0056 = 2,2944$$

 $b + 3b = -0,25 + 0,0046 = -0,2454$

The variance of b is estimated at 0,000859. The estimated standard error of b is accordingly

To return to a scale of cms., we multiply by 4/10, giving

The limits which enclose the true value with a probability of 95% are

The corresponding limits for mean range are

Using the improved estimates, we recalculate the rate, r, the expected number, m = hr, and finally the χ^2 . At the same time we may check that $\sum m = \sum y$.

X.	2,2944 -0,2454x	IG.	h	m (=hr)	y	(y-m) ²
	2,2944	0,99183	232	230,10	242	0,615
1	2,0490	0,77601	209	162,19	152	0,640
2	1,8036	0,60714	411	249,53	241	0,292
4	1,3128	0,37166	240	89,20	96	0,518
protest and an expension of	manda projekti i dine i i produktor na produkti i dine i izna projekti i dine i		Mile high employ (spip so the similar right) of	The containing provides of the containing and provings with the Tailing	no compression de la	ewatra), assest da in tau stantista in the vita vita in calend
				731,02	= 731	2,065

Hence $\chi^2 = 2,065$

degrees of freedom = 2.

The agreement with the hypothesis is satisfatory.

Exponential Rate not tending to Zero

The hypothesis is that

$$P = \exp(\alpha + \beta x) + Y$$

It may be noted that this is formulation when the particles are of two kinds ("production" and "background") when the "production" particles are absorped by lead according to the exponential law while the rate of "background" particles is not appreciably reduced by the lead. If data are available from a separate experiment in which only "background" particles are observed, the whole data for this experiment are included with x, formally, equal to infinity.

We have

$$P_{\alpha} = \frac{\partial \rho}{\partial \alpha} = \rho$$

$$P_{\beta} = \frac{\partial \rho}{\partial \beta} = x\rho$$

$$P_{\gamma} = \frac{\partial \rho}{\partial \gamma} = 1$$

The maximal likelihood equations are accordingly

$$\Sigma y - \Sigma m = 0$$

$$\Sigma xy - \Sigma xm = 0$$

$$\Sigma y/r - n = 0$$

and the information matrix is

$$\{I\} = \begin{cases} \mathbb{Z}^m & \mathbb{Z}^m \\ \mathbb{Z}^m & \mathbb{Z}^m \end{cases}$$

$$\mathbb{Z}^h & \mathbb{Z}^h & \mathbb{Z}^h \end{cases}$$

Sum of two Exponentials

Two series of observations are made: in the first only the "background" particles are counted, their true rate being given by

$$\rho = \exp(\alpha + \beta x)$$

In the second, both "background" and "production" particles are counted, their combined rates being p + p', where

$$p' = \exp(\alpha' + \beta' x)$$

The derivatives are

$$\frac{\partial \rho}{\partial \beta} = \frac{\rho}{\alpha \rho}$$

$$\frac{\partial \rho}{\partial \beta} = \frac{\alpha \rho}{\alpha \rho}$$

$$\frac{\partial \rho}{\partial \beta} = \frac{\alpha \rho}{\alpha \rho}$$

The equations of maximal likelihood are therefore

It is noted that in the first series,

while

Hence in the third and fourth equations, summation takes place only over the second series.

The information matrix is

$$\begin{bmatrix}
\Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, \\
\Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, \\
\Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, \\
\Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{mr}, \\
\Sigma_{r+r}^{mr}, & \Sigma_{r+r}^{$$

Notation			
	THE RESIDENCE OF THE PARTY OF T	paraine rate & background	ate Bioth
APP PE		proportion of both ground 4	THE RESIDENCE OF THE PARTY OF T
	p =	proportion of typeground 4-	
ds		lexp(a+bx)3/10	
	9 =	proportion of (gasoline) & followidence	1 coincidences which
ner		leng (f + gx)3/10	
	26 =	to + (1-t)9,	
9		memor glows	
3	4 =	mumber of sourced remaider	100
	y	number of freshold consider	1024
	S	summation over "backgroun	and only" series
	2 -	" "Implegrous	d+ gasoline" serves.
Estimation			
Salver to	ig t is given		
	2 1		
	* -	# S3/S6	
		23/26	
using to	de value of t	no have the lagarithm of &	Helphood
A 4 4 7 7 7	101 + 2 (3-A) (ed (1-	p) * Ibylogen * Ilg-yylogen	
The court is	na of marinal is	Opelet word over	
0 = S	# - 334	+ 1(2 1/4 - 2 1/4	1 -0
# · s	# - SAL	* 机工作物 一定特化	3 - 0
数 *		(4) (2 中部 年 - 文 神社	-0
## #		(NE - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	

处

The !	Information Mat	nis is		
8 3	te + t² Σ 3½ ½	S *30 + t2 2	135 to to;t) Z 30 4	t(1-t) 2 x3b . 2
		S ** + + + + 2	短短短音和医影響 化强制等品的复数形式混合的使用处	to-t) \(\sum_{1-u}^{\frac{1}{2}} \cdot \frac{2}{2} \)
			0-672 \$ 79-12	(1-t)2 7 839 9
1			ansas	(1-t)2 Z x 39 . 9
dosa				
	Backgroun		saw (ima) + 5	
OC.		6	gasolina h	
0	162 269	237.08	184 349 237,50	
3	88 151	160,66	155 284 230,1b	
4	.76 130	142,58	189 341 287,41	
Tota	730	816,23	1236 1007,65	
	Background rat		709 - 0,87	12
Bo	religiound + 4 isolins	e sale	1236 . 1,221	64.2
He.	nea t		0,80312 4 9,695	50
	Jan 184			

Piel	milary	estimate	90	and b		100 PM		
1	4	3	3/3	log (10y/5)	a+bx	7	έp	
0	162 267	267	0,607	1,803	4.85	0,634598	0,442	1,8271
	123	191	0,644	4863	1,825	0, 62029	0,431	1,8125
3	76	130	0,585	1,766	1,75	0,57546	0,400	1,7833
Estra		runied say	et rolle	F1.4				
		1	a =			elation to	aster-	
				3, 10,025				
Gens	aminary ove 4-fai	estimate d and 5%	of the	gastie	table to the	the broke ground	d	
	4	3	tp3	g-tpg :	3 3/3	e log (u	478)	
0	184	309	137		2. 0,50			
3	155	284	116	39 9	6 0,4	1,60		
4	189	341	136	53 10	4 0.5			
Entras	ntes obtain	ined grap	HILL	= 6,74				
44			9	P=0,05				

			4	
Company to the com	for Background Data			100 M (1) 100 M.
			ngp etc	
2 14	3 p 31	<u>i</u>	* 2 ² 1-p	
19 10 10				A STATE OF THE STA
0 162	267 0,63598 169,8	A PART OF THE PART	0 0	
11 123	191 0,62029 118,4		2,6336 2,633	2846
3 88	151 0,59004 89,11	COLUMN TO THE PARTY OF THE PART	7,3149 21,95 9,4220 37,68	
# 76 Thral 149	1130 0,5750 14,5		9,4220 37,68	•
5 72	739 452,14 5 4 1162,14	S#96 a	1683.98	
8.30	1142,04	392	1668, 91	sitter .
				410,14
	9.18.43		# 15.07	MAR ABASA
	94 m	Site	5087,54	ence admin
			and region to the	
Computation	n for Background plus (Javoline Data		
0	7 18+9× P	2	. 39 /	8
		*esplitegely 3		
0 184	309 1,74 0,63598		1,52 176,05	\$
185	302 1,69 0,62029		1,33 /163,67	}
3 155	184 1,59 0,59004		139,27	.5
4 189	341 154 0,54536	0,4664h 106	159,06	
24-1 T T T	1236			
			9-4	E/S
471124 1	114 744		1597,23	
169.45 4	41.78			

GH	entodian for B	ackground plus Gas	chie Dela	
7	y x	f+ga p	9u	p/u 9/u
0	184 309	1,74 0,63598	0,56973 0,61581	1,03275 0,92517
12	185 302	1,69 0,62029	0,541951 0,596411	1,03999 9,968,50 0,91
3	189 341	1,59 0,59004 1,54 0,5454b	0,46646 0,54227	
and I	17236			
74	1-u 1	The Fee	23b <u>23b</u>	30 ×20 ×3 1+20 1+20 1-
4	478,93	511,52		458,23 0 0
3		056,06 380,57	141,71 3425,13	
4	412,91	651,64 428, 10	1714,80 1859,20	347.50 1390,00 5560,
Tehul	1902,28, 3	166,12, 1984,98	3320,40, 10948, 82	1527,58 2744,43 8490
	2 1-21 4	= 1780,86	Z Final	= 3342,82
	2 24	= 1784,98	2 454	# 3320,70
		4,32		+ 22,12
	2 744 24	= 1 1523 - 24	2 774 C	2762,55 -2489,90 #
H-18	5 株	= 1527,58	2 432	2704,43
		\$ 23,01		# 45 H7 + 18,12
		- 4,34		

5 30 9 =	1597,23	2 23b.b = 2 = 2 = 2 = 4 = 4 = 4 = 4 = 4 = 4 = 4	350b, 14 -2897, 16 -2924, 36	2 ×232. b	= 11372,68 = 9322,99 = 9350,69
232 a =	1368,19 10,48372 Legarithmic 2	2 7308 9 = t(v-t) =		$2^{\frac{x^2}{1-u}}u^{\frac{u}{u}}$ $(-\varepsilon)^2$	= 7626,00
9L/3a = #	+15,07 +	(0,69550)(=4,432 (0,69550)(22,12))	4 30,45	
1stormation n		(0,30450)(+4,35) (0,30450)(48,12)		+ 5,518	
\$364,9 338,26	3364,9 10588,7 613,56	338,26 613,56	618, 56	N.	
Coverigace Ma	1974,42	222,11	707,08)		
0,00160),	0,000517	0,001387	0,001384	+30,43 +30,457	-0,0229 +0,0104
0,004,47	-0,001012	-0,00,0142,	9,005912	-1,888 +5,518	-4,0033

.40 1,827 \$1 20769 Curring 1 standard -0,0533 - 0,0769 -0,1302 in units of 5 cms 38,4 Cons. (using 1,96 ad) 9,2040 -1/9 (5 cm) 98 24,5 ms.

	*						2														
	1						4		est		9										
		B	ackq		nol	'							A	ade	jani.	will-rg	alot.	1			
*		y		3		3/3					3				3	1	4	a kak			
		102	26	7	0,	606	74				-2	18	4	31	9	0,5	0547	A STATE OF THE STA			
1		123	19	1	0,	643	100				4	18	5	30	2	0,6	258	7			
3.		88	E,	51	9,	583	78				ele_	15	5	2.8	4	0,5	497				
4		76	//	30	9	564	62			,	12	18	9	34		0,51	425				
		XI.																			
		449	73	19	0,	109	1578					Zi	3	12	36	0,5	1686				
					9,	392	422									9,41	23135				
0					4	238	143									0,2	4409				4
															4						
		43			1384								X			2,93949					
-				1	749								+3			e, human					
		<i>a</i>		3						1				-		3.849				H	
													gt			3					
													P			28%	Case	max.			
										1		4									
					110	20.02	the	rK.	4	-	ein	de	La	in	or	Ther					
					desi	20	sha	t	عاد		4.2		cd	ces	H,	the		,			
							on I				423				The P						
									1												
	4	196	red !	199	solo																
	4								20				56		44	46					
			5	MONNIE	Milan I								253								
-	23	44	25%	1/2					0,1		•		25	3		29.4	1925				
								-)	9,9	984	4	1-7 (11)									
	2 5							318								1	75	3	+		
			124					-	12		1		1		-	9,20	403		*1		
		1	1						1 23							9.5			-		
																12/2					

Uniforming of 4 good wie, 267 319,91 0 3461 237,08 0,80564 151 0100,06 and golog 0,9477 1,18646 866123 0, 453122 1007,65 1,226616 140,88 1237,66 1,60 Die t 8 739 1-t

